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Abstract—Power side-channel attacks are seeing a resur-
gence of interest in computer security research. An emerg-
ing class of these attacks exploits remote methods to mon-
itor power consumption—most notably by observing power-
dependent CPU frequency variations. However, existing meth-
ods have only been demonstrated on (older) x86 CPU archi-
tectures where frequency scaling is the primary—if not only—
mechanism utilized to keep the system within safe operating
conditions. It remains unclear whether remote power side-
channel attacks are still feasible on modern x86 CPU archi-
tectures with additional, more sophisticated such mechanisms.

We demonstrate that not only do remote power-side chan-
nel attacks remain feasible on modern x86 CPU architectures,
but that they are also more effective and work even in the
absence of frequency side-channel leakage. Our attacks take
advantage of Thread Director, a hardware optimization that
provides scheduling “hints” to enhance performance and en-
ergy efficiency on modern Intel processors. We demonstrate
that these hints depend on the processor’s power consumption,
leading to power-dependent scheduling behaviors—such as
variations in the number of active cores—that can be observed
purely from software and even via remote-timing analysis. We
show the efficacy of our attacks by leaking keys from constant-
time cryptographic code (5× faster than prior attacks on older
x86 CPUs) and mounting cross-origin pixel stealing attacks.

1. Introduction

Power side-channel attacks are seeing a resurgence of
interest in computer security research. Traditionally, these
attacks required access to power measurement equipment
(e.g., oscilloscopes) located in physical proximity to the vic-
tim device [1], [2], [3], [4], [5]. In the past few years, how-
ever, researchers have demonstrated new classes of power
side-channel attacks where attackers infer power consump-
tion remotely, without any physical access. These remote
attacks have been used to leak cryptographic keys [6], [7],
[8], [9], [10], [11], revive pixel stealing attacks [11], [12],
fingerprint websites [12], [13], [14], break KASLR [9], [14],
[15], and mount Meltdown- and MDS-style attacks [16].

To date, two methods have been shown to enable re-
mote power side-channel attacks on x86 CPUs. The first
method abuses the Running Average Power Limit (RAPL)
interface [7], [8], [13], [15], [16], [17]. This method al-
lows directly measuring the processor’s power consumption
from software but has been mitigated by restricting and
adding noise to RAPL measurements [18], [19]. The second

method—dubbed Hertzbleed—indirectly measures the pro-
cessor’s power consumption by monitoring power-dependent
CPU frequency variations that occur when the processor
exceeds power or thermal limits [9], [10], [11], [16].

However, the effectiveness of the Hertzbleed method
has only been demonstrated on older x86 CPU architec-
tures, where frequency scaling is the primary—if not only—
mechanism utilized to keep the system within safe power
and thermal limits. In contrast, many modern x86 processors
use multiple, more sophisticated such mechanisms, where,
as we show in Section 4.2, frequency scaling is sometimes
only used as a last resort. It remains unclear whether remote
power side-channel attacks are still feasible on these sys-
tems and whether power-management mechanisms beyond
frequency scaling introduce new leakage channels.

In this paper, we demonstrate that not only do remote
power-side channel attacks remain feasible on modern x86
CPU architectures, but that they are also more effective
and work even in the absence of frequency side-channel
leakage. Our discovery takes advantage of Thread Director,
a hardware optimization that helps the operating system
(OS) schedule threads to the “most appropriate core” (e.g.,
P-core or E-core) on recent Intel processors [20], [21].
We demonstrate that, under certain circumstances, Thread
Director’s scheduling “hints” depend on the processor’s
power consumption. Moreover, these hints result in power-
dependent scheduling behaviors—such as variations in the
number of active cores—which can be observed purely from
software and even via remote-timing analysis.

We start by reverse engineering, for the first time, the
Thread Director optimization on a modern Intel Meteor
Lake processor. First, we find that Thread Director assigns
one of four class IDs to each running thread based on the
instruction mix it is running at the granularity of microsec-
onds. Second, we show that when the processor is power
constrained and the CPU cores are unable to run above
certain frequencies, Thread Director gives idling hints to the
OS, recommending to use a reduced set of cores rather than
further lowering the CPU frequency. These hints depend on
the power consumption of the whole processor, including the
CPU and the integrated GPU. Finally, we find that Thread
Director’s hints depend on the CPU and GPU active states.

We then analyze how the Windows scheduler acts on
Thread Director’s hints. First, we show that Windows gives
threads with different class IDs different priorities on the P-
cores. Interestingly, this mechanism deviates from Windows’
stated goal of treating same-scheduling priority threads as
equal [22]. Second, we show that Windows does not sched-
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ule threads on cores with idling hints. This behavior results
in the average number of active cores varying depending
on the processor’s power consumption. Notably, this occurs
even when the CPU frequency of all active cores is constant
and thus independent of power consumption. Moreover, this
behavior is observable via remote timing, since differences
in core usage lead to execution time differences.

We demonstrate the security implications of our findings
by mounting covert and side-channel attacks. Our covert
channel attack exploits the observation that a process can
“game” the Windows scheduler into making different de-
cisions solely as a function of its class ID. For exam-
ple, a receiver thread executing scalar instructions may be
scheduled on an E-core when a sender process runs vector
instructions; however, if the sender runs busy spin loops, the
same receiver thread may instead be scheduled on a P-core.
We demonstrate that this mechanism can be abused to mount
a reliable covert channel with a channel capacity of up to
16.62 bits per second. Despite its low channel capacity, this
covert channel does not rely on the sharing (and probing) of
any microarchitectural structure nor the use of a timer; the
only requirement is a way for the receiver to identify the
core type it is running on, which can be done via Windows’
GetCurrentProcessorNumber API.

Finally, we demonstrate two examples of side-channel
attacks that exploit power-dependent scheduling. Our first
side-channel attack targets cryptographic code running on
the CPU. Specifically, we reproduce the attack demonstrated
by Wang et al. [9] on a constant-time implementation of
SIKE. The attack leverages the fact that, when provided with
specially-crafted inputs, the power consumption of SIKE’s
decapsulation depends on individual key bits. The original
attack inferred key bits by monitoring CPU frequency vari-
ations, which in turn produced observable remote timing
differences. Our attack infers key bits by monitoring vari-
ations in scheduling behavior, which also produce remote
timing differences. Under default system settings, our attack
recovers the full key via remote timing in 7 hours, which
is 5× faster than the time reported by Wang et al. [9] on
older x86 CPUs. Moreover, the attack remains effective even
when the frequency of all active cores is constant.

Our second side-channel attack targets browser code
running on the GPU. Specifically, we demonstrate a cross-
origin pixel stealing attack on the latest version of Google
Chrome (as of April 2025). Similarly to prior work from
Wang et. al [11] and Taneja et al. [12], our attack exploits
the pixel color-dependent power consumption of the GPU
when applying SVG filters on top of iframes. Unlike prior
work, our attack does not rely on measuring differences in
the CPU frequency or the GPU rendering time. Instead, it
leverages the fact that when the GPU consumes more power,
Thread Director gives more aggressive idling hints, causing
CPU threads to be scheduled on a limited set of cores
earlier; an attacker can observe this behavior indirectly from
Javascript, since running the same operations on different
sets of cores takes different amounts of time. The attack
takes 7.1 s per pixel, which is on par with prior pixel stealing
attacks exploiting remote power side channels [11], [12].
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Figure 1. Thread Director assigns a class ID to each running thread and
provides guidance on the placement of threads to different CPU cores via
the Thread Director table. On Meteor Lake, this table has one row for each
CPU core and two columns indicating the performance capabilities (Perf
Cap) and energy efficiency capabilities (EE Cap) for each class ID. The
scheduler can use this information to guide scheduling decisions.

Disclosure. We disclosed our findings to Intel, Microsoft,
and Google in November 2024. Intel assessed the vulner-
ability as a variant of Hertzbleed (aka CVE-2022-24436).
Microsoft assessed the vulnerability as “moderate severity,”
but—as of April 2025—was still deciding whether and how
to mitigate. Google (in reference to the pixel stealing attack)
stated that they “don’t have a comprehensive solution for
this bug yet, and won’t for a while”. They later resolved our
and other closely related pixel stealing attacks as “WONT-
FIX” [23]. None of the vendors requested an embargo.

2. Background

2.1. Heterogeneous CPU architectures

Heterogeneous CPU Architectures, also known as hybrid
architectures, are architectures featuring multiple types of
cores with different microarchitectural characteristics that
cause them to run workloads with different performance
and energy-efficiency profiles. Despite having been com-
mon in mobile systems-on-a-chip for over a decade [24],
heterogeneous CPU architectures have only recently been
introduced to mainstream PC processors from Apple [25],
Intel [26], [27] and AMD [28]. In this work, we study the
Intel Meteor Lake heterogeneous CPU architecture [29],
which was introduced in late 2023 and uses a combina-
tion of performance-optimized cores (P-cores), efficiency-
optimized cores (E-cores, organized in clusters of 4), and
low-power efficiency-optimized cores (LP E-cores). We use
Pn to indicate the n’th P-core and Pn-m to indicate P-cores
n to m. We use a similar notation to indicate E-cores (En)
and LP E-cores (LPn). When Hyper-threading is enabled,
we use Piht0

and Piht1
to indicate the two hyperthreads of

a P-core Pi. We count cores starting from index n = 0.

2.2. Intel Thread Director

Thread Director is an optimization designed to improve
task scheduling on Intel’s heterogeneous CPU architec-
tures [21]. Specifically, Thread Director gives “hints” to the
operating system (OS) to help schedule “the right task to the
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right core type” [20]. Thread Director was first introduced
in 2021 with the Alder Lake microarchitecture and has been
used on most desktop and mobile Intel processors since
then [30]. Thread Director consists of two components: (i)
a runtime characterization of threads into classes and (ii) a
hardware feedback interface table (Thread Director table).

Workload classification. Thread Director’s first component
monitors the instruction mix of software threads and assigns
a class ID to each thread [31]. On Meteor Lake CPUs, this
class ID can take values between 0 and 3 and represents
the performance difference between running that thread
on different core types [30]. Class 0 denotes workloads
that perform similarly on P-cores and E-cores (e.g., scalar
instructions). Classes 1 and 2 denote workloads that perform
better on P-cores than on E-cores (e.g., vector, AI, and accel-
erated instructions). Class 3 denotes spin loops that do not
scale with higher performance. The OS can read the class
ID of a running thread from its core’s IA32_THREAD_-
FEEDBACK_CHAR model-specific register (MSR) [21].

Thread Director table. Thread Director’s second compo-
nent is the Thread Director table (also called the EHFI
table [21]), which provides guidance to the OS scheduler on
the placement of threads among CPU cores. Figure 1 shows
what the Thread Director table looks like on a Meteor Lake
processor with n P-cores, m E-cores, and l LP E-cores.
The table has one row for each CPU core and two columns
for each class ID. The two columns contain a performance
capability and an energy-efficiency capability for running a
thread with that class ID on each core. These capabilities
are numeric values ranging from 0 to 255, where a higher
value indicates a higher capability. When it is time for the
OS scheduler to schedule a thread, the scheduler can use that
thread’s class ID and the Thread Director table to dynami-
cally determine which cores are more performant and which
cores are more energy efficient for that thread [21]. The
Thread Director table is stored in memory, at the physical
address indicated in the IA32_HW_FEEDBACK_PTR MSR.
The hardware can dynamically update the Thread Director
table capabilities at runtime and notify the OS via interrupts.

2.3. Processor power management

P-states. Intel CPUs adjust their frequency at the granularity
of P-states, where each P-state corresponds to a different
frequency level in 100 MHz increments [21]. The range
of P-states varies depending on the processor model and
CPU core type. Each CPU core has a base frequency and
a max turbo frequency [32]. The base frequency indicates
the frequency a CPU core should be able to sustain under
normal operating conditions without exceeding its Thermal
Design Power (TDP). The max turbo frequency indicates the
maximum single-core frequency a CPU core can achieve.
We use the same P-state naming convention as Linux, where
a higher P-state indicates a higher frequency [33]. When
Turbo Boost is disabled, a core’s highest available P-state
corresponds to its base frequency. When Turbo Boost is

enabled, a core’s highest available P-state corresponds to its
max turbo frequency. On Meteor Lake, P-states are managed
entirely by the hardware based on workload demands and
thermal and power constraints [33], and each core can have
its P-state adjusted independently from one another [30].

Throttling. Modern Intel processors use power manage-
ment algorithms to ensure safe operating conditions after
the processor meets certain reactive limits (e.g., thermal or
power limits) [10], [34]. In this paper, we define throttling
as the state a processor enters after reaching these reactive
limits. Prior work shows that when the processor throttles
(i.e., after it meets reactive limits), the hardware dynamically
adjusts the CPU frequency based on the processor’s power
consumption [9], [10]. The root cause is that Intel processors
always try to run at the highest possible CPU frequency
given the available power budget, and the available power
budget depends on the processor’s power consumption.1

PP0 and PP1. Modern x86 processors support the Running
Average Power Limit (RAPL) interface that can be used to
measure an estimate of the energy consumption of various
components of the processor [21], [35]. The RAPL interface
of most modern Intel processors includes the PP0, PP1 and
PKG power domains: PP0 refers to the CPU cores; PP1
refers to the integrated GPU; PKG refers to the entire socket.

2.4. Pixel stealing attacks

Same-origin policy. The same-origin policy is a browser
security policy that isolates web pages with different origins,
where a page’s origin is the combination of its scheme (e.g.,
HTTP or HTTPS), host and port number. This policy helps
prevent malicious websites on the internet from interacting
with or reading from other websites that the user may visit
(e.g., an email provider or company intranet). For example,
if a framing web page embeds a cross-origin web page
within an iframe, the same-origin policy prevents the fram-
ing web page from accessing the contents of that iframe.

SVG filters. While a framing web page may not access the
contents of cross-origin iframes, web standards allow the
framing web page to apply graphical transformations on top
of iframes (and other HTML elements). These transforma-
tions can be defined via the <filter> CSS element and
include dozens of visual effects, from blur and color shift to
more complex ones such as 3D lighting. Most of these filters
are borrowed from the structured vector graphics (SVG)
standard and are commonly referred to as SVG filters [36].

Pixel stealing attacks. A pixel stealing attack occurs when a
web page uses side channels to learn information about pix-
els it does not have access to programmatically. This type of
attack was first presented by Stone [37] (and, concurrently,
Kotcher et al. [38]) in 2013. Stone’s work demonstrated

1. Specifically, the power budget is computed as the difference between
the reactive limit values and the average power consumption [10]
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that a framing web page could leak, pixel-by-pixel, a black
and white representation of the content rendered within a
cross-origin iframe, in violation of the same-origin policy.
The attack leveraged a pixel-color-dependent fast path in the
Firefox implementation of the feMorphology SVG filter.
Specifically, it used an SVG filter stack to isolate, binarize,
expand, and apply feMorphology on each target pixel,
which resulted in a different rendering time depending on
whether the pixel was black or white. The framing web
page could measure this rendering time difference using
the requestAnimationFrame API (invoked when page
rendering completes). Subsequent work demonstrated pixel
stealing attacks on Firefox, Chrome, and Safari that used
a similar framework but exploited pixel-color-dependent
timing variations in floating-point instructions [39], [40].

To mitigate these attacks, browsers adapted their SVG
filter implementations to run in constant time [41], [42],
[43], [44]. In 2022, Firefox further deployed Total Cookie
Protection [45], [46], which partitions cookie storage by the
top-level domain being visited. In 2020, Chrome [47] (and,
temporarily, Firefox [48]) changed the default value of the
SameSite attribute for cookies to Lax, which prevents
cookies from being sent for cross-origin frame requests
unless SameSite was explicitly set to None. Moreover,
many modern web sites that contain sensitive data disallow
cross-origin framing via the X-Frame-Options HTTP header
and the frame-ancestors Content-Security-Policy directive.

Recent work which is closely related to ours “revived”
pixel stealing attacks by exploiting pixel-color-dependent
power consumption [11], [12] and data compressibility dif-
ferences [49] in Chrome’s constant-time SVG filter imple-
mentations. Additionally, recent work from O’Connell et al.
shows that on unsupported system configurations, such as
devices using outdated or buggy drivers, Chrome resorts to
non-constant-time SVG filter implementations that enable
pixel stealing attacks via the cache side channel [50]. At the
time of writing, all these attacks still work against websites
that explicitly set SameSite=None and are not protected
via the X-Frame-Options header or the frame-ancestors di-
rective. These include, for example, Wikipedia [49].

3. Reverse engineering Thread Director

In this section, we reverse engineer the Thread Director
optimization on a modern Intel Meteor Lake processor, re-
vealing the precise conditions influencing Thread Director’s
hints to the OS. Section 3.1 focuses on the workload clas-
sification component, used to determine a running thread’s
class ID. Section 3.2 focuses on the Thread Director table
component, used to determine the performance and energy-
efficiency capabilities of different processor cores.

Experimental setup. We run our experiments on two AS-
Rock NUCS BOX mini PCs with the Meteor Lake pro-
cessors listed in Table 1. Both machines run Windows 11
(version 24H2) which, at the time of writing, is the only OS
with Thread Director support. We use the default Windows
configuration (“Balanced” power plan). To avoid side effects

Table 1. CPUS TESTED IN OUR EXPERIMENTAL SETUPS. BOTH
MACHINES ALSO HAVE TWO LP E-CORES (NOT SHOWN ON THE TABLE).

FREQUENCY NUMBERS ARE REPORTED IN GHZ.

Model Cores Base Freq. Max Freq. GPU (Xe)
Cores

GPU
Max Freq.P E P E P E

125H 4 8 1.2 0.7 4.5 3.6 7 2.2
155H 6 8 1.4 0.9 4.8 3.8 8 2.25

due to microarchitectural resource contention, we run this
section’s experiments with Hyper-threading disabled.2 To
read MSRs, we use the WinRing0 driver [51]. To sam-
ple the processor power consumption, we use the MSR_-
{PKG,PP0,PP1}_ENERGY_STATUS MSRs. We sample
the P-state of a core by reading the IA32_PERF_STATUS
MSR from that core. To read the Thread Director Table from
physical memory, we use the inpoutx64 driver [51].

3.1. Workload classification

We start by characterizing the workload classification
component of Thread Director. Recall from Section 2.2 that
this component assigns a class ID (from 0 to 3) to each
running thread depending on that thread’s instruction mix.
Intel indicates, roughly, the types of instructions that fall
within each class ID [31]. Additionally, Intel provides one
example workload for each class ID [30].

Methodology. Using Intel’s examples as a guide, we con-
struct three workloads. Class ID 0’s workload consists of
a loop of register-to-register scalar ALU instructions (xor,
add, and inc). Class ID 1’s workload consists of a loop of
register-to-register Advanced Vector Extensions (AVX) in-
structions (vfmaddsub132ps, vfmaddsub213ps, and
vfmaddsub231ps). Class ID 3’s workload consists of a
loop of pause instructions. We do not construct a workload
for class ID 2 but note that class 2 instructions are just
higher-priority AVX instructions with similar core-to-core
IPC ratios to class 1 instructions [31], [52].

We confirm that each workload classifies to the intended
class as follows. First, we reset the Thread Director history
using the hreset instruction [21], which also causes the
IA32_THREAD_FEEDBACK_CHAR (class ID) MSR to be
marked as invalid. Then, we execute the target workload
until the class ID MSR is marked as valid. Once valid,
we verify the reported class ID against the intended one.
Following this approach, we verify that Thread Director
consistently classifies our workloads as intended on both
P-cores and E-cores. Additionally, we observe that the class
ID is updated within 6 to 21 µs of execution in all cases.
This is consistent with Intel’s claim that Thread Director
communicates with the OS on a microsecond level [52].

1. Thread Director communicates the class ID of running
threads to the OS on a microsecond level.

2. We verify that our findings also apply with Hyper-threading enabled.
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Table 2. CPU POWER CONSUMPTION (PP0) WHEN RUNNING EACH CPU
STRESSOR ON ALL P-CORES AND E-CORES (OF OUR 155H PROCESSOR)

AND WITH ALL CORES RUNNING AT THEIR BASE FREQUENCY.

Instruction imul and xorl xorh

PP0 power (W) 7.75 9.02 9.42 10.41

Table 3. GPU POWER CONSUMPTION (PP1) WHEN RUNNING EACH
GPU STRESSOR ON OUR 155H PROCESSOR, WITH THE GPU RUNNING

AT ITS MAX FREQUENCY. FMUL MAKES PARTIAL USE OF THE GPU.

Instruction fmul fmal fmah

PP1 power (W) 11.83 21.75 27.05

3.2. Thread Director table

We now analyze the table component of Thread Director.
Recall from Section 2.2 and Figure 1 that this component
consists of a table storing performance and energy efficiency
capabilities for each CPU core. Intel reports that these
capabilities are dynamically updated based on the TDP,
operating conditions, and power settings without any user
input [31]. Our goal in this section is to analyze how these
capabilities depend on the processor’s power consumption.

Methodology. We use a series of CPU and GPU stres-
sor programs. The CPU stressors consist of n threads,
each executing an infinite loop of ALU instructions (all
class 0). We vary the specific ALU instructions running
inside the loop between imul, and, and xor—which we
select because they result in different power consumptions
in our experimental setup (cf. Table 2). We additionally
create two variants of the xor CPU stressor: a high-power
xorh, whose execution has a high Hamming distance and
Hamming weight, and low-power xorl, whose execution
has a low Hamming distance and Hamming weight.3

The GPU stressors consist of OpenCL workloads with
kernels executing loops of either floating-point multiplica-
tion and addition (fma) or only floating-point multiplication
operations (fmul) for approximately 1 minute. In the first
stressor, fmah, the kernel performs multiplication and addi-
tion operations on random numbers, the work-group size is
CL_DEVICE_MAX_WORK_GROUP_SIZE, and the number
of work-groups is CL_DEVICE_MAX_COMPUTE_UNITS.
The second stressor, fmal, is a variant of fmah that operates
on zero values instead of random values. In the third stressor,
fmul, the kernel performs only multiplications on zero
values and the number of work-groups is only 4, resulting
in a lower power consumption (cf. Table 3).

To avoid side effects due to scheduling, we pin each
thread of this section’s CPU stressors to a unique CPU core.4
We run each stressor in two setups: in the first, we disable
Turbo Boost, reducing the likelihood that the processor starts

3. The power consumption on Intel CPUs depends on the Hamming
distance and Hamming weight of the data being processed [9].

4. We verify that when a thread is pinned to a single core, it runs on
that core regardless of Thread Director’s hints.

Table 4. THREAD DIRECTOR TABLE’S DEFAULT CAPABILITIES ON OUR
155H PROCESSOR, REPORTED WHEN THE CPU CORES ARE ACTIVE AND

THE PROCESSOR IS NOT THROTTLING. “Cn” STANDS FOR “CLASS n”.

Core Performance (Perf) Energy Efficiency (EE)
C0 C1 C2 C3 C0 C1 C2 C3

P0-1 67 105 168 43 33 44 51 21
P3-5 63 98 157 40 35 46 54 22
E0-3 41 41 41 38 124 101 77 113
E4-7 41 41 41 38 115 94 71 105
LP0-1 0 0 0 0 0 0 0 0

throttling [9]; in the second, we leave Turbo Boost enabled.
We sample each core’s P-state every 10 ms and the Thread
Director table every 50 ms.5 We collect 30,000 P-state and
6,000 Thread Director table samples and use their averages
for our analyses. For simplicity, we use the Core Ultra 155H
machine (with 6 P-cores) for our discussion, but analogous
findings apply to all machines in our experimental setup.

CPU-only workloads. We start by measuring how the
Thread Director table capabilities change as a function of the
number of active CPU cores and the CPU power consump-
tion. To this end, we run each CPU stressor from Table 2
with a variable number of threads n (with 1 ≤ n ≤ N ,
where N is the total number of cores) while pinning threads
in the order of P-cores, E-cores, and LP E-cores.

When we run the above experiment with Turbo Boost
disabled, the processor does not throttle and the capabilities
in the Thread Director table are always the same regardless
of the stressor and the number of threads. We call these
capabilities, reported in Table 4, the default capabilities. For
all class IDs in this configuration, P-cores consistently have
higher performance capabilities than E-cores and E-cores
consistently have higher energy-efficiency capabilities than
P-cores. For each P-core, the class capabilities are ranked
such that C2 > C1 > C0 > C3 for both performance and
energy efficiency. For each E-core, the class capabilities are
ranked such that C2 = C1 = C0 > C3 for performance,
and C2 < C1 < C3 < C0 for energy efficiency. Further,
the default capabilities of LP E-cores are always set to
zero. These observations are consistent with Intel’s official
description of Thread Director [31] and with their claim that
the LP E-cores are intended for “low-utilization, parasitic
background tasks” [53], [54]. As we do not experiment with
low-utilization tasks, we exclude the LP E-core capabilities
from our analyses in the remainder of this paper.

2. When running CPU-only workloads and the proces-
sor does not throttle, the Thread Director table always
reports the default capabilities regardless of the power
consumption and the number of threads.

Next, we run our experiments with Turbo Boost enabled.
Here, we observe that the Thread Director table starts with
the default capabilities but dynamically updates them after

5. We empirically observe that the Thread Director table updates at a
coarse granularity, on the order of hundreds of milliseconds.
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Figure 2. Average P-state, performance capabilities, and energy-efficiency capabilities of the active P-cores when running the ALU-only CPU stressors
with a variable number of threads (with each thread pinned to a unique CPU core in the order of P-cores, E-cores, and LP E-cores).
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Figure 3. P-state and class 0 capabilities of P0 when running 6 and
CPU stressors on the P-cores of our 155H processor. The P-state and
performance capabilities drop, while the energy efficiency capabilities grow
shortly after the processor starts throttling.

the processor begins throttling. Consider, for example, the
case when we run the and CPU stressor with n = 6
threads pinned to cores P0-5. Figure 3a shows the P-state
of core P0 during one run of the experiment. The P-state
starts at 46, corresponding to a 4.6 GHz frequency. This P-
state is sustained for about 20 s, during which the Thread
Director table reports the default capabilities. Then, the
processor begins throttling, reducing the P-state to remain
below safe power and thermal limits. Figure 3b shows
the performance and energy-efficiency capabilities of P0
during the same time period. Here, the capabilities start at
their default values. However, after the P-state drops, the
performance capability decreases and the energy-efficiency
capability increases. That is, after the processor begins throt-
tling, the reported capabilities change to reflect variations in
the P-state, which in turn are influenced by the processor’s
power consumption [9]. This behavior is consistent across
cores and is supported by Intel manuals, which state that
Thread Director’s feedback is “dynamic” and “based on
power/thermal limits” [30]. We refer to the capabilities in
this configuration as dynamic capabilities.

Figure 2 shows the results for other stressors and num-
bers of threads. In particular, Figure 2a reports the average
P-state of all active P-cores, and Figures 2b and 2c report the
average P-core capabilities during each experiment. Here,
we observe that the performance capabilities are lower and
the energy-efficiency capabilities are higher when the P-state
is lower, confirming that these capabilities are dynamically
updated to reflect differences in the processor’s P-state (and,

hence, power consumption [9]). We observe the same be-
havior in the E-cores: the only difference is that the E-core
energy-efficiency capabilities also shift by a fixed amount
depending on the active states of the two E-core clusters.

3. When running CPU-only workloads and the proces-
sor throttles, the Thread Director table reports dynamic
capabilities which reflect changes to the CPU power
consumption and P-states. A higher power consumption
results in lower performance capabilities and higher
energy-efficiency capabilities on all cores.

Having established that the Thread Director table is
dynamically updated when the processor throttles, we now
investigate whether the dynamically updated capabilities
result in changes to the class or core type rankings com-
pared to the default capabilities.6 To this end, we analyze
all the Thread Director table samples collected during the
experiments of Figure 2. We make two observations. First,
for each CPU core, the class capabilities are always ranked
the same way as in the default capabilities. For example,
for any given P-core, the dynamic class capabilities are still
ranked such that C2 > C1 > C0 > C3 for both performance
and energy efficiency. Second, when running CPU stressors
with n threads, the core types of the most performant and
most efficient n cores do not change between default and
dynamic capabilities. For example, when running n = 4
stressor threads, the 4 cores with the highest performance
capabilities are still all P-cores and the 4 cores with the
highest energy-efficiency capabilities are still all E-cores.

4. When running an n-thread CPU workload, the core
types of the most performant and most efficient n cores
are the same between the default and the dynamic capa-
bilities. Also, the ranking between each core’s class IDs
is always the same as in the default capabilities.

Intel manuals mention that Thread Director’s feedback
can also come in the form of “idling hints”, when “power

6. Recall from Section 2.2 that when it is time for the OS to schedule
a thread, the scheduler can use the Thread Director table to determine the
most performant and efficient cores for that thread. These cores depend on
the ranking of capabilities of the thread’s class between different cores.
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(b) Perf capabilities vs Number of active cores
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Figure 4. Average P-state, performance capabilities, and energy-efficiency capabilities of the active P-cores when running the memory-intensive CPU
stressors with a variable number of threads (with each thread pinned to a unique CPU core in the order of P-cores, E-cores, and LP E-cores).

Table 5. CPU POWER CONSUMPTION (PP0) WHEN RUNNING THE
MEMORY-INTENSIVE CPU STRESSORS ON ALL P- AND E-CORES (OF

OUR 155H PROCESSOR), WITH CORES RUNNING AT BASE FREQUENCY.

Instruction imul and xorl xorh str

PP0 power (W) 12.70 13.18 13.49 14.14 15.21

and thermal are constrained” [30]. We hypothesize that these
hints correspond to setting certain cores’ capabilities to zero,
indicating “a recommendation to the OS to not schedule any
software threads” on those cores [21]. However, we do not
observe any such cases in Figure 2’s experiments. Below,
we investigate two methods to trigger said idling hints.

First, we repeat the experiments of Figure 2, but this time
we increase the power consumption of our CPU stressors by
introducing high memory utilization. Specifically, we mod-
ify each thread to allocate a 256 KB array and execute loads
from this array in addition to the stressor’s ALU instructions.
We also include an additional str CPU stressor, which
performs memory stores to a 4 MB array in addition to
the loads. Table 5 shows the power consumption of these
memory-intensive CPU stressors, and Figure 4 shows the re-
sults. The initial behavior is similar to that of Figure 2: as the
power consumption increases, the core capabilities become
dynamic, reflecting changes to the P-states. However, as the
power consumption continues to grow (e.g., when running
the memory-intensive xorh stressor with n ≥ 11 threads),
the P-core capabilities start dropping more drastically until
they are all set to zero. We observe the same behavior in
the E-cores, with the exception of the last two cores (E6-7),
whose capabilities remain non-zero even when all other core
capabilities are zero. Following Intel’s terminology [30], we
refer to zero core capabilities as “idling hints”.

We then analyze the samples collected during Figure 4’s
experiments. Here, we observe that idling hints consistently
appear whenever the following two conditions are met: (i)
the processor is throttling and (ii) the P-state of at least one
core falls below a certain value. On our 155H processor,
this value appears to be 15 for P-cores and 12 for E-cores,
respectively, and the P-states of P1 and E4-7 are consistently
the first ones to drop below (and last ones to return above)
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(d) Idling hints when running xorh

Figure 5. P-states and number of cores with idling hints when running the
memory-intensive xorl or xorh CPU stressors with n = 12 threads,
each thread pinned to a unique CPU core. After the processor starts
throttling, idling hints occur only in the xorh stressor (Figure 5d), where
the minimum P-core P-state (Pmin) or the minimum E-core P-state (Emin)
fall below (yellow regions) and remain at or below 15 and 12, respectively.

these values.7 When the processor throttles and the P-state of
at least one core falls below these values, idling hints begin
to appear starting from P0 and progressing core by core until
reaching E5. Conversely, when the processor stops throttling
or the P-state of all cores goes above these values, idling
hints begin to disappear in the reverse order—starting from
E5 and progressing core by core until reaching P0. When
the processor throttles and the P-states of at least one core
is exactly at these values, idling hints do not change.

For example, Figure 5 shows the P-states and the number
of cores with idling hints during one run of the xorl and
xorh stressors with n = 12 threads. Before the processor
starts throttling, no cores have idling hints. After the pro-
cessor starts throttling, idling hints occur only in the xorh
stressor, where the P-state of at least one core falls below
the aforementioned values (yellow regions) and remains at
or below these values for the duration of the experiment.

7. Each core can have its P-state adjusted independently (cf. Section 2.3),
but the 4 cores in each E-core cluster always run at the same P-state.
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To corroborate our findings, we run additional experi-
ments designed to satisfy the above conditions and trigger
idling hints. To satisfy the first condition (P-states below
certain values), we manually lower the maximum P-state
of P-cores to 9 and E-cores to 8. To satisfy the second
condition (processor throttling) while operating at reduced
frequency levels, we run our workloads with a reduced
processor’s power limit (manually configured via the MSR_-
PKG_POWER_LIMIT MSR). In this setup, we observe that
idling hints always occur whenever the processor throttles.

These experiments are consistent with Intel’s claim that
when the power budget is constrained, “an E-core may
become the most performant core or operating on a limited
set of cores may provide best system performance” [55].

5. When running CPU-only workloads, the processor
throttles, and the P-state of at least one core falls below
a certain value, the Thread Director table gives idling
hints, which consist of cores with zero capabilities.
When these conditions are met, idling hints gradually
appear in core order on all cores except for E6-7. When
some cores have idling hints, the ranking of performance
capabilities between P-cores and E-cores changes com-
pared to the default capabilities.

Activating the GPU. We now investigate a second method
to trigger idling hints by running stressors on the integrated
GPU. By doing so, we aim to reduce the available power
budget of the CPU and induce idling hints without the need
for high memory utilization or reduced power limits.

To study how the Thread Director table changes when
both CPU and GPU are active, we repeat the experiments
from Figure 2 while simultaneously running the GPU stres-
sors from Table 3. We make the following observations.
First, the first two P-cores (P0-1) always show idling hints
when the GPU is active and the number of CPU stressor
threads is n ≤ 8, regardless of the processor’s power
consumption. Intel patents and videos suggests that this
behavior may be intended to redirect the CPU power budget
to the GPU to boost GPU performance [55], [56], [57].

6. When the GPU is active and the number of active CPU
cores is n ≤ 8, Thread Director always gives idling hints
on the first two P-cores P0-1.

Second, when the GPU is active, the processor throttles,
and the P-state of at least one core falls below a certain
value, idling hints begin to appear on other cores too. On
our 155H processor, this value appears to be 17 for P-cores
and 14 for E-cores, respectively. When n ≤ 8, these idling
hints start from P2 and progress core by core until reaching
E6. When n > 8, they start from P0 and progress until
reaching E5. Once the processor stops throttling or the P-
state of all cores goes above these values, idling hints begin
to disappear in the reverse order. Finally, when the processor
throttles and the P-states of at least one core is exactly at
these values, idling hints do not change.
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(d) Idling hints when running fmal
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(f) Idling hints when running fmah

Figure 6. P-states and number of idling hints when the GPU runs the fmul,
fmal, and fmah GPU stressors and the CPU runs the xorh CPU stressor
with n = 8 threads (pinned to P0-5, E0, and E4). In all cases, before the
processor throttles, there are 2 idling hints (due to the GPU being active
and n ≤ 8). After the processor starts throttling, idling hints appear on all
cores (except for E7). These idling hints are due to the minimum P-core
P-state (Pmin) or the minimum E-core P-state (Emin) falling below (yellow
regions) and remaining at or below 17 and 14, respectively. This occurs
consistently when running the fmah/fmal stressors, and only temporarily
when running the lower-power fmul stressor.

For example, Figure 6 shows the P-states and the number
idling hints when the GPU runs the fmul, fmal, and fmah
GPU stressors and the CPU runs the xorh stressor with
n = 8 threads pinned to P0-5, E0, and E4. In all cases,
before the processor starts throttling, only P0-1 have idling
hints; these are due to the GPU being active and n ≤ 8. After
the processor starts throttling, idling hints start occurring on
other cores too (except for E7); these are due to the P-
state of at least one core falling below the aforementioned
values (yellow regions) and subsequently remaining at or
below these values This occurs consistently when running
the fmah and fmal stressors, and temporarily when running
the lower-power fmul stressor. The only difference between
the fmah and fmal stressors is that idling hints occur earlier
when running fmah due to its higher power consumption.
We observe analogous results with other CPU stressors.
Moreover, when we manually lower the maximum P-state
of P-cores to 9 and E-cores to 8, we observe that idling
hints always occur whenever the processor throttles.8

8. In this case, the GPU power consumption is high enough to induce
throttling (and thus idling hints) despite the reduced frequency levels.
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7. When the GPU is active, the processor throttles, and
the P-state of at least one core falls below a certain
value, Thread Director gives idling hints for all cores
except for E7 (when the number of active CPU cores
is n ≤ 8) or E6-7 (when n > 8). The higher the GPU
power consumption, the earlier the processor throttles
and Thread Director gives these idling hints.

Summary. Putting all this together, the Thread Director
table can show three types of capabilities:

1) Default capabilities: These are fixed (cf. Table 4),
appear when the processor does not throttle, and do
not depend on the processor’s power consumption.

2) Dynamic capabilities: These appear when the proces-
sor throttles; they depend on the processor’s power
consumption but do not affect the P-core to E-core
capability ranking compared to the default capabilities.

3) Idling hints: These occur in two cases:
a) Consistently on P0-1 when the GPU is active and

there are n ≤ 8 active CPU cores.
b) Core-by-core on all cores except for E6-7 or E7

(depending on the CPU and GPU active states) when
the processor throttles and the P-state of at least one
core falls below a certain value.

In case (b), idling hints depend on the processor’s
power consumption. In both case (a) and case (b),
idling hints change the P-core to E-core capability
ranking compared to the default capabilities.

4. Analyzing the impact of Thread Director on
the Windows scheduler

In this section, we analyze how the Windows OS sched-
uler uses Thread Director’s hints. Section 4.1 analyzes how
scheduling varies as a function of Thread Director’s class
IDs. Section 4.2 analyzes how scheduling varies as a func-
tion of the capabilities stored in the Thread Director table.

Experimental setup. We use the same experimental setup as
Section 3. Additionally, we sample the core where a thread
is running on by calling the GetCurrentProcessor-
Number Windows API from said thread.

4.1. Workload classification

We now analyze how scheduling on Windows varies as
a function of class IDs. In particular, we demonstrate that
a process can “game” the Windows scheduler into making
different decisions solely as a function of its threads’ class
IDs. As we show in Section 5, this behavior can be exploited
to build a reliable cross-core covert channel.

Methodology. We aim to understand whether Windows
gives different priorities on P-cores to threads based on their
class IDs. To this end, we use the workloads from Sec-
tion 3.1 to construct three receiver programs. Each receiver

runs multiple threads, each executing a loop of instructions
of a specified class ID and sampling the core where it runs
every 10 ms. We run each pairwise combination of receivers
simultaneously and vary the number of threads of each
receiver. For all combinations of receivers and thread counts,
we calculate the total percentage of time during which each
receiver runs on P-cores (across all its threads). To isolate
the class ID-dependent scheduling behavior and avoid side
effects due to throttling (analyzed in Section 4.2), we disable
Turbo Boost. Figure 7 shows the results. We discuss the
results for our Core Ultra 155H machine, but the results
apply to both our machines.

Observations. First, when the total number of threads across
both receivers is equal to or lower than the number of
P-cores, all threads run on the P-cores. This is consistent
with our observation from Section 3.2: since P-cores con-
sistently have higher performance capabilities than E-cores,
the scheduler prioritizes them for threads of all class IDs.

Second, when two receivers with the same class ID
run simultaneously, the scheduler gives their threads equal
priority on the P-cores, as shown in the top-left to bottom-
right diagonal of Figure 7. In this case, if the number of
threads is greater than the number of P-cores, the scheduler
uses its default round-robin scheduling policy, where each
thread gets equal time slices on the P-cores [22].

Third, when two receivers with different class IDs run
simultaneously, the scheduler gives priority on P-cores to
the receiver whose class ID has higher P-core performance
capabilities. Thus, a class 1 receiver always gets priority
on the P-cores over a class 0 or 3 receiver, and a class 0
receiver always gets priority on the P-cores over a class 3 re-
ceiver. This ranking matches that of the default performance
capabilities, where C1 > C0 > C3 (cf. Section 3.2).

8. When threads with different class IDs run simulta-
neously, Windows prioritizes those with higher P-core
performance capabilities on P-cores.

Security implications. The above mechanism deviates from
Windows’ [22] (and other commonly used schedulers’ [58],
[59]) stated goal of treating same-scheduling priority threads
as equal. This observation comes with several security im-
plications. First, by monitoring its P-core usage, a thread
may be able to infer the class ID of other threads running
on the system, even when those threads never share a core.
For example, a class 0 thread that never gets scheduled on
the P-cores may infer that other threads are executing class 1
instructions. In Section 5, we exploit this behavior to mount
a covert channel. Second, although we do not explore these
scenarios in this paper, a malicious program may attempt
to get priority on P-cores by adding class 1 instructions to
its own threads. This may be exploited, for example, by
certain types of software (e.g., videogames, cryptojacking
malware) to boost their performance at the cost of other
programs or by a VM [60], [61] to bias scheduling decisions
at the cost of other VMs. Finally, the ability to manipulate
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Figure 7. Class scheduling heatmap on our 155H machine (with 6 P-cores). The y-axis label represents the class ID of the receiver whose P-core usage we
report in that row. The x-axis label indicates the class ID of the receiver running simultaneously with the y-axis receiver. Tick marks within each subplot
indicate the number of threads of the respective receiver. Cells marked with an “×” indicate invalid configurations exceeding the number of cores. Darker
cells indicate higher P-core usage, meaning that the y-axis receiver threads spent more time running on P-cores in that configuration: a black cell means
that the y-axis receiver spent 100% of its time on P-cores, whereas a white cell means that the y-axis receiver spent 0% of its time on P-cores.

the scheduler and could be abused to facilitate co-location
between programs and slow down other programs. These
capabilities have been shown to facilitate microarchitectural
side-channel attacks [62], [63], [64].

4.2. Thread Director table

We now analyze how scheduling on Windows 11 varies
as a function of varying Thread Director table capabilities.
In particular, we demonstrate that when Thread Director
gives idling hints on specific cores, the Windows scheduler
does not schedule any threads on those cores. As we show,
this results in a power consumption-dependent scheduling
behavior where the average number of active cores varies

depending on the processor’s power consumption. This ob-
servation undergirds both side-channel attacks of Section 6.

Methodology. In this section, we rely on a new core sam-
pling CPU stressor. This stressor consists of n threads, each
executing a loop of instructions from Section 3.2’s CPU
stressors and sampling the current core where it is running
every 5 ms. Unlike in Section 3.2, we do not pin the threads
of this section’s CPU stressors to any specific core, allowing
the scheduler to place threads wherever it sees fit.

Dynamic capabilities. We start by analyzing whether the
scheduling behavior changes when the Thread Director table
reports dynamic capabilities compared to the default capa-
bilities. Recall from Section 3.2 that dynamic capabilities
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appear when the processor throttles. To understand if dy-
namic capabilities affect scheduling, we run the ALU-only
core sampling CPU stressors with a variable number of
threads n (with 1 ≤ n ≤ N , where N is the number of
cores).9 For each experiment, we measure the percentage of
samples the CPU stressor’s threads spend on P-cores (i.e.,
the P-core usage). In all cases, we observe no statistically
significant difference in the P-core usage when the table
reports the default capabilities (the processor does not throt-
tle) and when it reports dynamic capabilities (the processor
throttles). This is consistent with our observation from Sec-
tion 3.2 that the core types of the n most performant and
most efficient cores when running an n-thread workload are
the same between the default and the dynamic capabilities.

9. The P-core usage of unpinned CPU-only workloads
is the same whether the Thread Director table reports
dynamic capabilities or the default capabilities.

Idling hints. We now analyze whether the scheduling be-
havior changes when the Thread Director table gives idling
hints. Recall from Section 3.2 that idling hints occur either
(i) when the GPU is active and there are n ≤ 8 active CPU
cores, or (ii) when the processor is throttling and the P-state
of at least one core falls below a certain value.

We start by investigating how the idling hints caused
by our memory-intensive CPU stressors affect scheduling.
To this end, we run the memory-intensive core sampling
CPU stressors with a variable number of threads n while
monitoring the Thread Director table and P-states. As in
Section 3.2, we observe that idling hints begin to appear as
soon as the processor throttles and the P-state of at least
one core falls below 15 (for P-cores) or 12 (for E-cores).
However, unlike in Section 3.2, idling hints never reach E5.
This is because, as soon as idling hints start appearing, the
OS stops scheduling threads on the affected cores, causing
them to go idle. These idle cores reduce the processor’s
power consumption, allowing the P-states to rise. As a result,
the idling hints begin to disappear, and the idle cores begin
to wake up. This, in turn, causes the power consumption to
grow and the P-states to drop again, triggering new idling
hints. As this cycle repeats, the number of active cores
oscillates and depends on the power consumption.

10. When Thread Director gives an idling hint on a core
(and no threads are pinned exclusively to that core),
Windows 11 does not schedule threads on that core.

Figure 8 shows example runs of the xorl, xorh, and
str memory-intensive core sampling CPU stressors with
n = 14 threads. When running xorl and the processor
throttles, the P-states never fall below the aforementioned
values. As a result, no idling hints occur, and all cores
remain active. However, when running xorh or str and the

9. We confirm that when running these stressors, the P-states are high
enough for idling hints not to occur, similarly to what we see in Figure 2.
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(d) P-core usage (xorh).
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(e) P-core idling hints (str).
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(f) P-core usage (str).

Figure 8. Number of idling hints on P-cores and P-core usage when running
the memory-intensive xorl, xorh, and str core sampling CPU stressors
with n = 14. When the number of idling hints is higher, the P-core usage
is lower, confirming that Windows does not schedule threads on cores with
idling hints. Additionally, the number of idling hints (and, hence, idle cores)
varies depending on the processor’s power consumption.

processor throttles, the minimum P-core P-state oscillates
between 12, 15, and 18 and the minimum E-core P-state
oscillates between 10, 12, and 14. This results in the number
of idling hints oscillating between 0 and 1 in the xorh case
or 1 and 2 (in the str case). This is directly reflected in the
number of active P-cores, which oscillates between 5 and 6
or between 4 and 5, respectively.

The above result demonstrates that the average number
of active P-cores decreases when the processor’s power
consumption grows. To corroborate this finding, we re-run
Figure 8’s experiments with two additional stressor threads
pinned to the LP E-cores (LP0-1), which are otherwise
unused. Here, we observe results similar to Figure 8 but with
a larger number of idle cores during throttling. Specifically,
the number of active P-cores oscillates mostly between 1
and 2 when running the xorl and the xorh stressors, and
between 2 and 3 when running the str stressor.

11. When running unpinned CPU-only workloads, the
processor throttles, and the P-state of at least one core
falls below a certain value, the number of active cores
varies as a function of the processor’s power consump-
tion. Specifically, a higher processor’s power consump-
tion results in a lower number of active cores.

11
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Figure 9. Distribution of P-states when running the memory-intensive CPU stressors with n = 14 threads on our 155H processor. The plot includes the
results when running each stressor with two additional threads pinned to LP0-1. Circle size represents how frequently each core (x-axis) runs at each
P-state (y-axis). For example, E4-7 has a bigger circle at P-state 12 because, most of the time, it runs at P-state 12. The mean P-states for each workload
are marked with an “×”. With higher-power workloads (e.g., str), some cores have smaller (or no) circles due to power-dependent idling hints. However,
the P-states of the active cores consistently oscillate between the same values, regardless of the processor’s power consumption.
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Figure 10. Same as Figure 9, but with the maximum P-state capped at 9
for P-cores and 8 for E-cores and a reduced processor power limit of 20 W.

Figure 9 shows P-state samples collected during the
above experiments. Interestingly, we observe that when
idling hints occur, the P-states of the active cores consis-
tently oscillate between the same values, regardless of the
processor’s power consumption. For example, the P-state
of P1 oscillates between 12, 15, and 18, spending most
of the time at 15. Similarly, the P-state of E4-7 oscillates
between 10, 12, and 14, spending most of the time at 12.
This behavior suggests that when the processor is throttling
and at least one CPU core is unable to run at or above
certain P-states (in our case, 15 for P-cores and 12 for E-
cores), Meteor Lake’s power management algorithm prefers
reducing the number of active cores over further lowering
the P-states. In these cases, adjusting the number of active
cores—not frequency scaling—appears to be the primary
mechanism used to maintain safe operating conditions. As
a result, the number of active cores depends on the power
consumption despite the absence of frequency side-channel
leakage. The P-states are only further reduced if we force
the OS to ignore idling hints by manually pinning threads to
enough cores (as we do in Figure 4), or if the power budget
becomes so constrained that core idling alone is insufficient.

To corroborate this finding, we re-run Figure 8’s ex-
periments while manually setting the maximum P-states of
P-cores to 9 and E-cores to 8 and reducing the processor
power limit to 20 W. In this setup, we still observe that
the average number of idle cores is higher when the power
consumption is higher. However, as shown in Figure 10, the
P-states of the active cores remain constant regardless of

the power consumption. This demonstrates that the number
of active cores can depend on the power consumption even
when the CPU frequency is constant.10

12. Meteor Lake’s power management algorithm prefers
reducing the number of active cores over lowering the
CPU frequency below certain values. Once the CPU
cores reach these values, the number of active cores can
depend on the processor’s power consumption even in
the absence of frequency side-channel leakage.

Finally, we investigate how the idling hints caused by our
GPU stressors affect scheduling. To this end, we execute
the CPU core sampling stressors (with n threads) while
simultaneously running the GPU stressors from Section 3.2
and monitoring the Thread Director table and P-states. As
in Section 3.2, we observe that the first two P-cores (P0-1)
always show idling hints when the GPU is active and
n ≤ 8, regardless of the processor’s power consumption.
This results in 2 P-cores always being idle. Moreover, when
the processor starts throttling and the P-state of at least
one core falls below 17 (for P-cores) or 14 (for E-cores),
idling hints start occurring on other cores too, except for
E7 (when n ≤ 8) or E6-7 (when n > 8). As in the CPU-
only experiments, when idling hints appear, the OS stops
scheduling threads on the affected cores, causing them to
go idle. However, due to the high GPU power consumption,
idling some CPU cores does not help reduce the processor’s
power consumption enough for the P-states to return above
the aforementioned values. Hence, in our experiments, idling
hints always reach E6 (when n ≤ 8) or E5 (when n > 8).11

Figure 11 shows the results when the GPU stressors run
alongside n = 6 xorh core sampling threads. In all cases,
before the processor starts throttling, P0-1 are idle and the
other P-cores are active. This is due to the GPU being active
and n ≤ 8. After the processor starts throttling, all cores

10. If we reduce the power limit too much (e.g., to 15 W), reducing the
number of active cores is not enough and frequency scaling is used too.

11. We hypothesize that, for lower-power GPU stressors, the number
of active cores may also depend on the processor’s power consumption.
However, even with many idle cores, the GPU stressors we use are too
power-hungry for the P-states to return above the aforementioned values.

12
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(a) P-core idling hints (fmul).
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(b) P-core usage (fmul).
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(c) P-core idling hints (fmal).
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(d) P-core usage (fmal).
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(e) P-core idling hints (fmah).
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(f) P-core usage (fmah).

Figure 11. Number of idling hints on P-cores and P-core usage when
running the fmul, fmal, and fmah GPU stressors and the xorh core
sampling CPU stressor with n = 6. All CPU threads are scheduled to E7
and the P-core usage goes to zero as soon as the package starts throttling,
which happens earlier for GPU stressors using higher power. When running
fmul, idling hints oscillate since the scheduler listens to the idling hints,
causing the processor to periodically (and temporarily) stop throttling.

except for E7 become idle. This is due to the P-states falling
below the aforementioned values, which occurs consistently
in the fmah and fmal case (except for a brief peak around
second 35 in the trace) and periodically in the fmul case.
As in Section 3.2, the only difference between the fmah and
fmal stressors is that, due to its higher power consumption,
fmah causes all P-cores to become idle earlier.

13. When the GPU is active, the processor throttles, and
the P-state of at least one core falls below a certain value,
all cores become idle except for E7 (when the number
of active CPU cores is n ≤ 8) or E6-7 (when n > 8).

5. Covert channel

We now demonstrate how to use the findings from
Section 4.1 to mount a reliable cross-core covert channel
which does not require the sharing of any microarchitectural
structure nor the use of any (explicit or implicit) timer.

Channel setup. Like prior work, our covert channel makes
use of a receiver and a sender. The receiver supports three
configurations (one per class ID) corresponding to the three
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Figure 12. Total time the receiver threads spend on P-cores when the
receiver runs class 0 instructions, the sender transmits a sequence of ‘0’s
and ‘1’s by alternating class 1 and class 3 instructions, both receiver and
sender use 6 threads, and the transmission interval is 375 M cycles. When
the sender transmits a ‘1’, the receiver threads spend significantly more
time on the P-cores than when the sender transmits a ‘0’.
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Figure 13. Raw bandwidth, error rate, and channel capacity using Fig-
ure 12’s configuration with a variable transmission interval.

receivers used in Section 4.1. The sender is a variant of
the receiver that can execute instructions of different class
IDs depending on the value of the bit being transmitted.
For simplicity, we build our sender to only transmit one bit
at a time. To transmit a ‘0’, the sender executes a loop of
instructions whose class ID has equal or higher priority on
P-cores compared to the receiver’s instructions. To transmit
a ‘1’, the sender executes a loop of instructions whose class
ID has lower or equal priority on P-cores compared to the
receiver’s instructions. The receiver infers each bit’s value
based on its threads’ P-core usage during each interval.

Evaluation. We create a proof-of-concept (POC) imple-
mentation of our covert channel, where the sender and the
receiver agree on a fixed bit transmission interval and syn-
chronize using the timestamp counter. Consider an example
where the receiver runs 6 threads of instructions with class
ID 0, and the sender runs 6 threads of instructions with class
ID 1 or 3 to transmit a ‘0’ or ‘1’ bit, respectively. Figure 12
shows the P-core usage measured by the receiver when the
sender transmits an alternating sequence of bits with an
interval of 375 M cycles (equivalent to a raw bandwidth
of 8 bps). Every other interval contains high P-core usage
measurements, which occur when the sender executes class
3 instructions. These intervals are decoded as ‘1’ bits.

We evaluate the above (unoptimized) POC with varying
interval durations and while transmitting 1 KB of data on
our machine with a Core Ultra 155H processor. Figure 13
shows the results, achieving a maximum channel capacity
of 16.62 bits per second. While this channel capacity is
relatively low, it is in the same order of magnitude as that of
prior covert channels that do not rely on monitoring shared
microarchitectural structures or using timers [8], [9], [15].
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(c) P-states (fixed frequency)
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(d) Idling hints (fixed frequency)

Figure 14. Distribution of P-states and number of idling hints while
processing 300 concurrent SIKE decapsulation requests for mi ̸= mi−1

(low power) or mi = mi−1 (high power) cases. Figures 14a and 14b
show the results under the default system configuration, and Figures 14c
and 14d show the results under the setup with the reduced P-states (“fixed
frequency”). Under both setups, the number of idling hints is power-
dependent even though the P-states are power-independent.

6. Side-channel attacks

We now demonstrate that Thread Director enables a
new class of remote power side-channel attacks where an
adversary infers the power consumption of a victim solely
by observing differences in the OS scheduling behavior.
To this end, we present two end-to-end attacks. The first
(Section 6.1) is a remote key extraction attack on a constant-
time implementation of the SIKE cryptosystem. The second
(Section 6.2) is a cross-origin pixel stealing attack leverag-
ing SVG filters in Google Chrome. Unless otherwise stated,
we run all attacks in the default system configuration, with
both Hyper-threading and Turbo Boost enabled.

6.1. Remote timing attack on SIKE

Our first attack targets a constant-time implementation of
the Supersingular Isogeny Key Encapsulation (SIKE) cryp-
tosystem, which is a postquantum key encapsulation mecha-
nism based on the Supersingular Isogeny Diffie-Hellman key
exchange protocol. While SIKE was recently deprecated due
to unrelated security concerns [65], [66], [67], we choose
it as a target because it serves as a good benchmark to
compare our attack against previous remote power side-
channel attacks [9]. The attack exploits a power side-channel
vulnerability that was discovered by Wang et. al [9] and,
concurrently, De Feo et al. [68]. Through this vulnerability,
an adversary with knowledge of the i least significant bits
(mi−1,...,m0) of a secret key m can construct a challenge
ciphertext such that SIKE’s decapsulation function operates
on a large number of zero values (resulting in a lower power
consumption) if and only if mi ̸= mi−1. We refer to the
original papers [9], [68] for details on the cryptanalysis.

Threat model. As in the original attacks [9], [68], we
assume a chosen-ciphertext attack model, where the adver-
sary can send ciphertexts to the victim, which always tries
to decapsulate them using its static secret key and replies
with an acknowledgement indicating the establishment of a
shared secret (but no other information). The attacker does
not have any access to the victim’s machine and can only
remotely measure the time it takes to get replies from the
victim. The goal of the attacker is to recover the secret key.

Experimental setup. We consider two system setups. In the
first setup, we use the default system configuration. In the
second setup, we limit the maximum P-states of P-cores and
E-cores to 9 and 8, respectively, and reduce the power limit
to 16 W (as opposed to the default of 28 W). We confirm that
in this second setup, the P-states of all active P-cores and
E-cores remain at 9 and 8, respectively, throughout the du-
ration of the attack (as we show in Figure 14c)—preventing
frequency side-channel leakage via Hertzbleed [9].

We target Cloudflare’s constant-time implementation of
SIKE [69] and the SIKE-751 parameter selection, which has
378-bit long secret keys. For the remote timing attack, we
use the same setup as Hertzbleed. Specifically, we configure
the server to accept decapsulation requests over HTTP and
spawn a new thread to handle each request. The victim’s and
the attacker’s machines are connected to the same network
and the average round-trip time between them is 2.3 ms.
The victim’s machine uses our 155H processor.

Secret-dependent idling hints. We start by verifying that
Thread Director gives fewer number of idling hints when the
decapsulation function operates on a large number of zero
values—resulting in lower power consumption—than when
it does not. To this end, we use Section 3.2’s methodology
to sample the Thread Director table and the P-states of the
active cores while processing 300 concurrent decapsulation
requests to the SIKE server. We run this experiment 1,000
times using challenge ciphertexts that induce zero values,
and another 1,000 times using ciphertexts that do not. Since
we run the experiment with Hyper-threading enabled, we
report idling hints at the granularity of each hyperthread.

Figures 14a and 14b show the results under the default
system configuration. The results show that the mean P-state
is the same but the average number of idling hints is lower
when the decapsulation function operates on many zero
values (mi ̸= mi−1) than when it does not (mi = mi−1).
As a result, the P-core usage of the SIKE is also lower under
these conditions. We observe a similar power-dependent
number of idling hints when running the experiments in the
setup with the reduced P-states (Figure 14d) even though the
P-states of the active cores is constant (Figure 14c). Neither
setup shows frequency side-channel leakage.

Remote key recovery. We now demonstrate that the secret-
dependent number of idling hints observed above translates
to a timing difference that is observable remotely despite
the absence of frequency side-channel leakage.
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Figure 15. Distribution of the timings measured by the attacker during
the remote key extraction attack, grouped based on whether they triggered
a large number of zero values (mi ̸= mi−1) or not (mi = mi−1).
Each sample represents the time required to complete 300 concurrent SIKE
decapsulation requests (all using the same challenge ciphertext).

As in the original attack [9], we set up the SIKE server
with a randomly generated key m, and we configure the
attacker to recover the first 364 bits of this key via an
adaptive chosen ciphertext attack and the last 14 bits by
brute-force search. Having recovered the first i bits of m,
the attacker sends 300 concurrent decapsulation requests to
the server with a challenge ciphertext that should trigger
a large number of zero values if and only if mi ̸= mi−1.
The attacker measures the time to receive responses for all
300 requests and repeats this measurement 70 times. If the
average of the observed times is shorter than a baseline
(experimentally established through profiling), the adversary
concludes that mi ̸= mi−1; otherwise, they conclude that
mi = mi−1. The attacker then proceeds to the next bit. If
20 consecutive bit positions show no timing reduction, we
assume a bit was recovered incorrectly and backtrack.

Figures 15a (default system configuration) and 15b (re-
duced P-states configuration) show the distribution of the
300-connection timing samples collected during the attack,
grouped according to whether the challenge ciphertext trig-
gered a large number of zero values (mi ̸= mi−1) or
not (mi = mi−1). These results demonstrate that secret-
dependent differences in the number of active cores are
remotely observable even in the absence of frequency side-
channel leakage. In the default system configuration, the
attack successfully recovered the full secret key in 7 h and
8 min after needing to backtrack twice. In the configuration
with reduced P-states, the attack successfully recovered the
full secret key in 38 h and 21 min after needing to back-
track 5 times. In contrast, the remote key extraction attack
demonstrated in the original Hertzbleed paper required 36 h
to leak the full cryptographic key (on an older x86 processor
under the default system configuration) [9].

6.2. Pixel stealing attack

Our second POC demonstrates a cross-origin pixel steal-
ing attack on Google Chrome version 135 (the latest at
the time of writing). The attack is similar to the cross-
component Hertzbleed attack demonstrated by Wang et
al. [11] but is the first to leak due to OS scheduling behavior.

(a) original (b) recovered

Figure 16. Result of our pixel stealing POC on Google Chrome, which
retrieves the checkerboard residing in a cross-origin iframe.

Attack setup. Our POC design is similar to the one used
in prior work [11], [12], [37], [38], [39], [40], [49]. To steal
a pixel, we first scale a cross-origin 1x1 target pixel into
a 3000x3000 iframe. We also apply feColorMatrix
and feComponentTransfer in this process to binarize a
pixel of any color to black or white. We use feComposite
to compose a random image and the target iframe. We then
apply a chain of feGaussianBlur filters which applies
a two-dimensional Gaussian function on this composed
iframe. To continuously repeat this application of SVG fil-
ters, we loop through requestAnimationFrame calls.
We make the GPU idle for 2.1 s between each pixel for
the processor to stop throttling. Based on whether the 1x1
target pixel was black or white, applying the above stack
of SVG filters results in a large difference in GPU power
consumption, changing when the processor throttles again.

Inferring the GPU power consumption via core usage.
Shortly after activating the GPU with the above filter stack,
the processor begins throttling. After this point, Thread
Director gives idling hints on all cores except for the last
one or two E-cores. As we discuss in Sections 3.2 and
4.2, the time when these idling hints appear depends on
the GPU power consumption. In our framework specifi-
cally, we observe that only white pixels cause the processor
to throttle (and thus exhibit idling hints) within 3.3 s of
launching the filter stack. Thus, an attacker can infer the
target pixel color by checking for the presence of idling
hints in the 3.1-3.3 s window after the SVG filter stack
begins. This can be observed even from Javascript, since
the idling hints cause a large reduction in the performance
of CPU workloads. Specifically, we infer the presence of
idling hints by spawning 20 Javascript threads, matching the
number of hyperthreads on our processor, and measuring the
cumulative number of increments they can do in the above
200 ms window. Using this setup, the number of increments
is 2.4× larger when the target pixel is black pixels (no idling
hints) than when it is white (idling hints).

To evaluate our attack, we embed a checkerboard in a
cross-origin iframe and demonstrate that an attacker can re-
cover it in Figure 16. Our attack achieves a 96.3% accuracy
and takes 7.1 s to leak each pixel, which is faster than the
one reported by Taneja et al. [12] on Intel GPUs (22.6 s per
pixel) and slightly slower than the one reported by Wang et
al. [11] on Intel GPUs (1-3 s per pixel). We expect that this
time could be reduced with careful optimization.
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7. Discussion and future work

Other system-on-a-chip components. While this work only
considers CPU and GPU workloads, an outstanding question
is whether our attack can be generalized to leak secrets from
other system on a chip (SoC) components. For example,
Intel mentions that Thread Director hints may also depend
on the power consumption of the Neural Processing Unit
(NPU), which is used by AI workloads [70]. Investigating
the feasibility of our attack on the NPU (and potentially
other on-chip accelerators) requires future work. However,
the techniques we use to build our cross-component attacks
should be applicable to components beyond the GPU.

Other microarchitectures and OSs. Intel claims that, while
the way Thread Director exposes information to the OS
has remained consistent across all Intel processors since
Alder Lake, the internal power management algorithms de-
termining what information Thread Director provides have
changed with Meteor Lake [54], [70]. Indeed, we were
unable to replicate our attacks and trigger idling hints on an
Intel Core i9-13900 Raptor Lake processor. We hypothesize
it should be possible to port our attacks to Intel microarchi-
tectures released after Meteor Lake (e.g., Lunar Lake and
Arrow Lake), but doing so may require additional tuning.

Two open questions are whether our attacks can be
generalized to other OSs and to non-Intel processors. We
believe that the answer is primarily “yes”. First, Intel is
working to add Thread Director support to other OSs, such
as Linux [71]. Second, other vendors are starting to offer
architectures with Thread Director-like optimizations. For
example, AMD recently submitted for review a series of
patches implementing an AMD Hardware Feedback Inter-
face driver designed to provide “behavioral classification and
a dynamically updated ranking table for the scheduler to use
when choosing cores for tasks” [72]. Similarly, comments
in the open-sourced macOS kernel code suggest that the
scheduler may use “signals like thermal levels for optimal
power/perf tradeoffs for a platform” [73] and that some cores
may be “derecommended due to thermals” [74]. We leave a
detailed investigation of these optimizations to future work.

Mitigations. One possible mitigation to our attacks is to
disable Thread Director via the IA32_HW_FEEDBACK_
CONFIG and IA32_HW_FEEDBACK_THREAD_CONFIG
MSRs [21]. We verified that writing 0 to these MSRs effec-
tively prevents Thread Director table and class ID updates,
respectively. However, this approach requires privileged ac-
cess, applies system-wide, may result in suboptimal perfor-
mance (according to Intel—some workloads enjoy 14% per-
formance improvement with Thread Director enabled [61]),
and leaves the system still vulnerable to Hertzbleed.

Since both our attack and Hertzbleed rely on the proces-
sor throttling, a more general system-level mitigation against
both attacks is to reduce the likelihood that the processor
throttles. One way to achieve this is to lower the maximum
allowed CPU P-state, as recommended by prior work and
the cryptographic community [9], [12], [75], [76]. However,

this approach incurs high performance overheads and may
not prevent attacks when the CPU power budget is severely
constrained (e.g., due to high-power GPU workloads or
custom power limits, as we show in Section 6).

In use cases where doing so is possible, performing
frequent key refreshes (as recommended by prior work [10])
would also mitigate our attack, since remote power side-
channel attacks require the ability to repeatedly initiate
operations with the same secret key.

In the long term, research is needed to develop gen-
eral, practical mechanisms to mitigate remote power side-
channel attacks purely from software. Physical power side-
channel defenses such as masking [77], [78] would prevent
our attacks, but masking is program-specific and incurs
significant performance overheads. As prior work notes, a
more practical approach could involve taking advantage of
the lower resolution of remote power side-channel attacks
compared to physical ones [9], [11]. For example, ensuring
that average power usage in a given time period (e.g., 1 ms)
is independent of secret data might be a sufficient mitigation.
However, how to apply this approach to arbitrary programs
remains an open research question.

Finally, our pixel stealing attack can be mitigated by
restricting sensitive data from being displayed inside cross-
origin iframes (cf. Section 2.4).

8. Related work

Hertzbleed [9] was the first work to demonstrate that—
when the processor hits certain thermal or power limits and
starts throttling—the processor’s CPU frequency becomes
dependent on the CPU (and GPU [11]) power consumption.
Our attack similarly relies on the processor throttling but
exploits differences in the CPU scheduling behavior rather
than frequency scaling. Specifically, we show that when the
active cores are unable to run above certain frequencies, Me-
teor Lake’s power management algorithm prefers reducing
the number of active cores rather than further lowering the
CPU frequency. This can lead to power-dependent schedul-
ing leakage even in the absence of frequency leakage.

Our work is also related to the work from Taneja et
al., who demonstrated that when the processor throttles, the
GPU frequency depends on the GPU power consumption,
enabling pixel stealing attacks on Intel and other GPUs [12].
Our pixel stealing attacks also rely on the GPU downclock-
ing its frequency, but do not require the ability to measure
the GPU rendering time. Additionally, our pixel stealing
attack is faster on Intel GPUs, where Taneja et al.’s attack
leaked 1 pixel every 22.6 s (with 77% accuracy).

Finally, our work is related to the rich literature on pixel
stealing attacks, which we covered in Section 2.4, and to
recent research on remote power side-channel attacks, which
we covered in Section 1. Concurrent work from Oberhuber
et al. demonstrates that both these attacks can be performed
by exploiting unprivileged APIs provided by the Android
sensor framework [79]. Our work is the first to demonstrate
that both these attacks can be performed just by monitoring
differences in the OS scheduling behavior.
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9. Conclusion

We demonstrated that the power management algorithms
of modern Intel architectures enable a new class of remote
power side-channel attacks that work even in the absence
of frequency side-channel leakage. The root cause of these
attacks is hardware-guided scheduling due to Intel Thread
Director. We showed that this optimization depends on the
processor’s power consumption and leads to behaviors—
such as variations in the number of active cores—that can be
observed via remote-timing analysis. Our attacks are up to
5× faster than those previously demonstrated on older x86
processors and remain effective even when the frequency
of the active CPU cores is constant. Thus, future mitiga-
tions should not just focus on frequency leakage and must
consider all sources of remote power side-channel leakage.
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