
GPU.zip: On the Side-Channel Implications of
Hardware-Based Graphical Data Compression

Yingchen Wang∗, Riccardo Paccagnella†, Zhao Gang∗, Willy R. Vasquez∗,
David Kohlbrenner‡, Hovav Shacham∗, Christopher W. Fletcher§

∗University of Texas at Austin, †Carnegie Mellon University,
‡University of Washington, §University of Illinois Urbana-Champaign

Abstract—Compression is a widely-deployed optimization that
reduces data movement throughout modern computing stacks.
Unfortunately, it is also a well-known source of side-channel
leakage capable of leaking (potentially) fine-grained functions
of the underlying data. There has, however, been a saving
grace. Compression is typically software visible. Thus, software
can “opt out” of harm’s way by disabling compression when
sensitive data is involved, and tailor mitigations to known,
public compression algorithms.

This paper challenges the above conventional wisdom by
demonstrating the existence of, and exploiting, software-trans-
parent uses of compression. Specifically, we find that integrated
GPUs from Intel and AMD vendors compress graphical data in
vendor-specific and undocumented ways — even when software
does not specifically request compression. Compression induces
data-dependent DRAM traffic and cache utilization, which
can be measured through side-channel analysis. We show the
efficacy of this side channel by performing cross-origin SVG
filter pixel stealing attacks through the browser.

1. Introduction

It is well known that moving data is often costlier than
computing on said data. Some data patterns occur more
often than others, so compression helps address the mem-
ory wall problem by eliminating redundancies within data,
thereby encoding the same data with fewer bits. Compres-
sion has seen significant uptake throughout the stack (e.g.,
in operating systems [1, pp. 362–64], Internet protocols [2],
[3], [4], databases [5] and graphics software [6]).

Unfortunately, besides its well-recognized performance
benefits, compression is also a known source of side-channel
data leakages. For example, a line of work [7], [8], [9]
(starting with Kelsey [10]) has shown that a chosen-input
attacker can leak secrets in HTTP/HTTPS requests and
responses bit-by-bit by exploiting how compressibility is
often secret-dependent [10].

Fortunately, several properties of compression help mit-
igate leakages. First, the compression is software visi-
ble. Thus, software can at least in principle “opt out” of
harm’s way by disabling compression when sensitive data
is present. Moreover, the compression algorithm, detailing
the process of eliminating redundancies in data, is publicly

available. This enables defenders to focus their attention,
mitigations, and analysis on a relatively small set of public
compression algorithms (e.g., DEFLATE).

This paper questions the applicability of these properties,
in modern systems, by demonstrating that compression of
graphical data can be software-transparent and vendor-spe-
cific. A GPU may compress a texture generated by a graph-
ical API even when software does not request compression
(e.g., by using a compressed texture format). Further, the
underlying compression algorithms used are vendor-specific
and undocumented. To confirm the existence of and under-
stand the details of such subtle compression, one has to
carefully design experiments, trace software stacks, and find
and reverse-engineer a sea of implementations.

The technical core of the paper is a detailed investiga-
tion of integrated GPU (iGPU)-based software-transparent
lossless compression schemes deployed on Intel and AMD
processors. To pinpoint the component responsible for com-
pression, and determine when it is invoked relative to frame
rendering, we trace the software stack from OpenGL through
its backend Mesa, the Linux kernel, and finally the iGPU.
Our analysis reveals that the compression is performed by
an iGPU-side component in a software-transparent manner.
We then perform an in-depth reverse-engineering of the
compression algorithm used by Intel 8th through 11th Gen
iGPUs and AMD 5th Gen GCN iGPU, and show that
compression algorithms a) are changing across generations
and b) vary between vendors.

We demonstrate that an attacker can exploit the iGPU-
based compression channel to perform cross-origin pixel
stealing attacks in the browser using SVG filters (the latest
version of Google Chrome as of April 2023), even though
SVG filters are implemented as constant time [11], [12],
[13], [14]. The reason is that the attacker can create highly
redundant or highly non-redundant patterns depending on
a single secret pixel in the browser. As these patterns are
processed by the iGPU, their varying degrees of redun-
dancy cause the lossless compression output to depend on
the secret pixel. The data-dependent compression output
directly translates to data-dependent DRAM traffic and data-
dependent cache occupancy. Consequently, we show that,
even under the most passive threat model — where an at-
tacker can only observe coarse-grained redundancy informa-
tion of a pattern using a coarse-grained timer in the browser

1

and lacks the ability to adaptively select input — individual
pixels can be leaked. Our proof-of-concept attack succeeds
on a range of devices (including computers, phones) from a
variety of hardware vendors with distinct GPU architectures
(Intel, AMD, Apple, Nvidia). Surprisingly, our attack also
succeeds on discrete GPUs, and we have preliminary results
indicating the presence of software-transparent compression
on those architectures as well.

In summary, this paper contributes the following.
1) We investigate the security implications of software-

transparent, vendor-specific, and undocumented iGPU
graphical data compression schemes.

2) We perform a detailed root-cause analysis on how the
compression schemes induce data-dependent DRAM
traffic and cache footprints. We isolate when and where
compression occurs, and reverse-engineer the compres-
sion algorithms used in recent Intel and AMD iGPUs.

3) We develop an end-to-end cross-origin pixel stealing
attack in the latest version of Google Chrome as of
April 2023 that works on multiple hardware platforms.

Disclosure. In March 2023 we disclosed our findings to
GPU vendors (AMD, Apple, Arm, Intel, Nvidia, and Qual-
comm) and our Chrome attack to Google. The GPU vendors
largely declined to act; one said the side channel was outside
their threat model, another that it was the responsibility of
software to mitigate. As of August 2023, Apple and Google
were still deciding whether and how to mitigate.

2. Background

2.1. GPUs, surfaces, and compression

Many GPU operations have two-dimensional pixel
buffers, called surfaces, as inputs or outputs. For example,
texture maps applied to three-dimensional shapes are inputs
to rendering; the framebuffer shown on the screen is an out-
put of rendering; and programmatically generated textures
are both inputs and outputs.

Graphical operations on surfaces exhibit locality of ref-
erence in (x, y)-space, but GPUs have memory hierarchies
similar to CPUs, where locality is governed by physical
memory address.1 This observation motivates the use of
tiling: a sophisticated arrangement of surface pixels in
memory that allows efficient random access to arbitrary
(x, y) coordinates while exhibiting memory locality along
both axes. Different GPUs use different tiling schemes. For
example, on Intel GPUs each 64-byte cacheline holds a
4× 4 pixel window (Section 4.2), and on AMD GPUs four
consecutive cachelines together hold an 8×8 pixel window,
each cacheline having a 2×8 pixel subwindow (Section 4.4).

Increasing graphical complexity, screen resolution, and
refresh rates mean that, even with the memory locality
afforded by tiling, GPUs are constrained by memory band-
width. Compression is a natural response to memory band-
width pressure, but general-purpose compression algorithms

1. Indeed, integrated GPUs share DRAM and, in some cases, a last-level
cache, with the CPU.

are incompatible with the random access and locality re-
quirements on surfaces.

GPU programming interfaces have long supported com-
pressed textures as a way of reducing GPU memory band-
width usage and game graphical asset size. To support local-
ity, texture compression algorithms have a fixed compression
ratio as a design parameter. For example, BC7 compresses
each 4 × 4 pixel window to 16 bytes, a 4 : 1 ratio. (See
Pranckevičius [15] for a survey of formats.) As a result,
these algorithms are lossy: They cannot be reversed to
recover the original pixel values.

It is fine for developers to opt in to lossy compression
for some assets, but a GPU that applied it to every surface
would risk unacceptable visual degradation on some work-
loads, especially those with many intermediate render targets
where error can accumulate. To be applied transparently to
every surface, compression must be of a special kind: It
must preserve locality and be lossless, yet allow low-entropy
regions to be described using fewer cachelines than their
uncompressed representation. The result is not a reduction
in memory footprint — indeed, the opposite, since out-of-
band metadata is allocated to identify compressed surface
regions — but a reduction in memory bandwidth usage when
reading and writing a compressible surface.

Blog posts, whitepapers, developer guides, and tech
talks from every major GPU vendor make clear that they
have developed and deployed lossless compression schemes
of this kind: AMD [16], Apple [17, at 2:51], Arm [18],
Imagination [19], Intel [20], Nvidia [21, pp. 12–14], and
Qualcomm [22, Section 2.3.5].

Operating systems’ graphics software stacks need mod-
ifications to enable the use of these lossless compression
schemes, for example to allocate a buffer that holds com-
pression metadata, but graphics software stacks do not
implement compression or decompression. Indeed, GPU
vendors treat their lossless compression schemes as propri-
etary information. Reverse-engineering and documenting the
compression schemes implemented by Intel and AMD GPUs
is a major contribution of this paper. We show that Intel
GPUs try to represent two cachelines (a 4×8 pixel window)
using one cacheline (Section 4.3) and that AMD GPUs try
to represent four cachelines (an 8× 8 pixel window) using
one, two, or three cachelines (Section 4.5).

2.1.1. A note about OpenGL and coordinate systems.
GPUs can be programmed using many APIs. The mecha-
nism we study is not API-specific, so we expect to find the
same result regardless of which API we use. For concrete-
ness, we implement our experiments using OpenGL, and
adopt OpenGL’s terminology to describe them.

In OpenGL, texture refers generically to either an input
surface or output surface. A shader is a user-defined sub-
routine written in a domain-specific language that executes
on the GPU. A vertex shader manipulates polygon vertices,
whereas a fragment shader computes the color (and other
properties) of the pixels bounded by a polygon’s vertices. A
program object combines shaders to render parts of a frame.

2

Table 1. SOCS AND INTEGRATED GPUS TESTED IN OUR LEAKAGE CHANNEL EXPERIMENT.

SoC model iGPU model Operating system and kernel LLC size Memory module Display

Intel i7-8700 (Coffee Lake) Intel UHD 630 Ubuntu 22.04 (Linux 5.15) 12 MB DIMM DDR4-2666 1920 × 1080 @ 60 Hz
Intel i5-1135G7 (Tiger Lake) Intel Iris Xe Debian 11.6 (Linux 5.10) 8 MB DIMM DDR4-3200 1920 × 1080 @ 60 Hz
Intel i7-12700K (Alder Lake) Intel UHD 770 Ubuntu 22.04 (Linux 5.19) 25 MB DIMM DDR4-3200 1920 × 1080 @ 60 Hz
AMD Ryzen 7 4800U (Zen 2) AMD Radeon RX Vega 8 Ubuntu 20.04 (Linux 5.19) 8 MB DIMM DDR4-3200 1920 × 1080 @ 60 Hz

A pipeline invokes one or more such program objects to
render a frame.

Graphics APIs, including OpenGL, put the origin at the
bottom left, with the y-axis pointing up, and tiling formats
follow suit, with the first pixel in the first tile in a surface
being the one at (0, 0). But GPU documentation illustrates
surface tiling formats with the origin at the top left, with the
y-axis pointing down towards higher memory addresses. In
this paper, figures that illustrate GPU memory layouts (Figs.
6, 9, 11, and 13) follow the GPU documentation convention.
To understand how they apply to pixels displayed on screen,
these figures should be interpreted with their y-axis flipped.

2.2. Browsers, the SOP, and pixel stealing

Pixel stealing attacks arise when one webpage can use
a side channel to infer the values of individual pixels that
the page does not have access to programmatically.

Generally, a browser is willing to load visual content
requested by one page, but belonging to another distrusting
page, at the same time in the form of iframes. As part of
the same-origin policy (SOP), iframes guarantee that even
if the framing page is malicious, it cannot inspect either the
source code for the iframed page, or the final visual product
of the iframe. Since a page may contain visual data that is
considered secret, e.g., usernames, email content, etc., it is
important that this safety property is upheld.

However, some web standards allow for the framing
page to apply additional visual effects, e.g., CSS filters, to
that content. These include dozens of different filters, from
complex visual effects (3D lighting) to simple convolutions,
many of which are borrowed from the SVG standard. Un-
fortunately, allowing a framing page to apply semi-arbitrary
computation to secret visual content has proven to be fertile
ground for side-channel attacks.

Paul Stone’s original attack [23] in 2013 took advantage
of source-code fast paths in browser SVG filter implemen-
tations to induce rendering time differences between black
and white pixels and then distinguish between them using
that rendering time. This requires the use of an iframe
containing a victim page, then specific combinations of CSS
and SVG filter constructs to isolate, binarize, and then finally
render a timing-variable feMorphology filter over a target
pixel. This attack approach was mitigated by re-writing filter
implementations to remove pixel-value dependent branches
and emulate the constant-time cryptographic coding style.

Most, but not all, modern sites that display sensitive
content like usernames disallow cross-origin framing via
features such as X-Frame-Options and the frame-ancestors
Content-Security-Policy (CSP) directive.

3. iGPU Graphical Data Compression Exists

In this section, we provide evidence supporting the exis-
tence of software-transparent graphical data compression on
the iGPU of multiple processors. This evidence undergirds
both the case studies in Section 4 and the cross-origin pixel
stealing attack in Section 5. Specifically, we create an iGPU
workload that constructs textures with different patterns and
uses them as inputs or outputs for iGPU graphical manip-
ulation. We investigate how DRAM traffic and bandwidth
vary with the graphical patterns being processed, and how
pattern-dependent DRAM traffic is reflected in rendering
times and in memory hierarchy contention.

3.1. Experimental setup

The experiments we present in this section are tested
on machines with Intel and AMD processors. The charac-
teristics of these machines are summarized in Table 1. Our
devices have the latest microcode patches as of April 2023.

Metrics. Our main measurement metrics are DRAM traffic
per frame and rendering time per frame. We also use DRAM
bandwidth to help explain results.

Rendering time per frame (or simply rendering time
where unambiguous) is the amount of time it takes for a
frame to refresh. A caveat is that modern graphics stacks
cap the frame rate at the monitor’s refresh rate. This puts
a floor on measured rendering time per frame of 16.7 ms
in our setup. In many of our experiments, we artificially
increase the complexity of the graphical workloads we ask
the iGPU to perform so rendering time exceeds this floor.

DRAM traffic per frame is the amount of data transmitted
across the DRAM data bus during the rendering of one
frame. Since our measurement process samples the amount
of data across the DRAM data bus every 1 ms, we use
the processor’s cycle counter to synchronize the rendering
process and the sampling process. Synchronization allows
us to identify and aggregate the measurements that belong
to the same frame in computing DRAM traffic per frame.

DRAM bandwidth is the amount of data transmitted
across the DRAM data bus between consecutive perfor-
mance counter readings, divided by the time between those
consecutive readings. Compared to the DRAM traffic per
frame metric, the DRAM bandwidth metric exhibits higher
variability. The reason is that GPU memory utilization is
not uniform within a frame, and for each frame, we collect
only one data point for the DRAM traffic but sample the
DRAM bandwidth every 1 ms.

3

Algorithm 1: OpenGL graphical workload.
Input: pattern, iterations

1 for i← 1 to iterations do
2 texture← GPU-WRITEpattern();
3 framebuffer← GPU-READ(texture);
4 end

Experiment Design. We carefully design our workloads and
experiments so that the above metrics are not impacted by
known effects described in prior work that are not related
to compression [24], [25]. Firstly, we write all workloads to
follow constant-time programming principles. Secondly, we
sample iGPU frequency when running each experiment to
ensure that any pattern-dependent observation of any metric
is not due to iGPU frequency variations.

Measurement Tools. On Intel, we follow the IGT GPU
tools.2 We use perf events uncore_imc/data_reads
and uncore_imc/data_writes to measure the amount
of data written to, or read from, DRAM, and i915/
actual-frequency to measure iGPU frequency. Where
there is more than one IMC (e.g., 12700K), we sample
the associated perf events for all and report the sum. We
measure IMC perf events every 1 ms and i915 perf events
every 5 ms.

On AMD, we use the hwmon interface exposed by the
Linux AMD iGPU driver to measure iGPU frequency. To
measure traffic on the DRAM data bus, we use the AMD
data fabric performance counters [26]. We sample both the
data fabric events and the iGPU frequency every 1 ms.

Plotting. Before reporting results, we exclude any data
points that are identified as outliers and verified to be caused
by non-systematic effects. We then calculate the average
and standard deviation. All plots include error bars; a dot
apparently alone is due to tight distribution of data.

3.2. Graphical workload

We design a workload that attempts to trigger iGPU
lossless compression with an iGPU-created texture. Recall
from Section 2.1 that a texture is a data buffer holding
2D pixel data that can be used as the input or output of
GPU rendering. In our workload, we study whether the
GPU compresses textures losslessly “under the hood” in a
software-transparent manner.

Our workload defines two program objects: GPU-READ
and GPU-WRITE. GPU-READ includes a trivial fragment
shader that copies from an input texture to the program
object output. GPU-WRITE includes a more complicated
fragment shader that computes one of the four patterns illus-
trated in Figure 1 depending on a configuration parameter.3

2. Online: https://gitlab.freedesktop.org/drm/igt-gpu-tools.
3. This configuration parameter is conveyed to the GPU-WRITE program

object in an OpenGL uniform and to the fragment shader in a vertex color.

Table 2. RESULTS OF RUNNING OUR GRAPHICAL WORKLOAD WITH
DIFFERENT PATTERNS ON PROCESSORS PRESENTED IN TABLE 1.

SoC (iGPU) Pattern DRAM traffic
per frame (MB)

Rendering
time (ms)

Intel i7-8700
(UHD 630)

BLACK 524.5 ± 8.6 70.5 ± 0.3
RANDOM 1063.0 ± 11.8 78.1 ± 0.3
GRADIENT 563.1 ± 11.0 70.7 ± 0.3
SKEW 1050.6 ± 9.6 78.2 ± 0.3

Intel i5-1135G7
(Iris Xe)

BLACK 451.0 ± 47.0 27.6 ± 0.03
RANDOM 893.0 ± 83.5 29.4 ± 0.04
GRADIENT 452.8 ± 46.6 27.6 ± 0.03
SKEW 453.7 ± 46.5 27.5 ± 0.03

Intel i7-12700K
(UHD 770)

BLACK 491.0 ± 25.7 46.3 ± 0.6
RANDOM 787.3 ± 32.3 47.4 ± 0.7
GRADIENT 493.7 ± 27.8 46.6 ± 0.4
SKEW 490.7 ± 26.1 46.6 ± 0.4

AMD Ryzen 7 4800U
(Radeon RX Vega 8)

BLACK 9.1 ± 2.7 27.9 ± 0.1
RANDOM 1214.2 ± 17.7 37.4 ± 0.2
GRADIENT 314.0 ± 5.6 30.3 ± 0.1
SKEW 526.4 ± 10.8 32.0 ± 0.1

We construct a 3000 × 3000 pixel 2D texture (large
enough to fill the LLC and force DRAM accesses for
all devices under test), which we call texture below. (We
stress that we do not ask that this texture have a software-
compressed (GL_COMPRESSED_*) layout.) We arrange for
the GPU-WRITE program object to write to texture. We
arrange for the GPU-READ program object to read from
texture and write to the framebuffer.

Our workload pseudocode is presented in Algorithm 1.
The workload is executed on each frame refresh. The it-
erations parameter controls how many times the workload
executes its inner loop. Within each iteration, we execute
GPU-WRITE at Line 2 first to create write traffic to DRAM,
then GPU-READ at Line 3 to create read traffic from DRAM.

3.3. Evidence for iGPU graphical data compression

We run the workload from Section 3.2 with each of the
four patterns in Figure 1 on the systems listed in Table 1,
while measuring rendering time per frame and DRAM traffic
per frame. We report and interpret the experiment results.
We argue that the data are consistent with graphical data
loss compression whose implementation varies by platform.

As described in Section 3.2, our workload has a com-
plexity scaling parameter, iterations. For this experiment we
set iterations = 20, which was sufficient to ensure that
rendering time exceeded the 16.7 ms floor on all devices
under test. We render each pattern for 400 seconds while
sampling performance counters as described in Section 3.1.
In Table 2, we report the average and standard deviation for
rendering time per frame and DRAM traffic (read + write)
per frame for each experimental condition.

First, a note about DRAM traffic. A naive implementa-
tion of our workload calls for the GPU to write a first texture
and then read a second texture for each loop iteration; with
parameters as described above and assuming a pixel takes 32
bits, such a naive implementation would transfer 1373 MB
per frame. The actual observed DRAM traffic per frame

4

https://gitlab.freedesktop.org/drm/igt-gpu-tools

(a) BLACK (b) RANDOM (c) GRADIENT (d) SKEW

Figure 1. The four patterns with which we instantiate our graphical workloads. The BLACK is all black. Pixels in the RANDOM have their color channels
chosen as a pseudorandom function of the pixel location (with fixed seed). The GRADIENT has a repeated grayscale gradient in the x direction. The SKEW
like GRADIENT, has a grayscale gradient, but aligned such that the colors in each row are shifted compared with the row above.

is somewhat lower than this upper bound on all platforms,
perhaps reflecting savings due to caching.

Importantly, on each device under test, the observed
DRAM traffic per frame varies with the pattern rendered;
this is consistent with lossless compression. Furthermore,
which patterns are apparently compressible, and how much,
varies by device; this is consistent with different devices
implementing different compression algorithms.

In particular, on the Intel i7-8700, the four patterns fall
into two categories: BLACK and GRADIENT are apparently
compressible whereas RANDOM and SKEW are not. On the
Intel i7-12700K and i5-1135G7, only RANDOM is appar-
ently non-compressible. On the AMD Ryzen 7 4800U, the
compression algorithm is apparently more sophisticated; we
observe a distinct DRAM traffic per frame for each pattern
ranging from less than 9 MB to more than 1200 MB.

On each device, the observed rendering time also varies
with the pattern rendered, and is higher when the DRAM
traffic per frame is higher. This is consistent with rendering
slowdowns due to contention on the memory subsystem.

We give additional evidence to support all these infer-
ences in Sections 3.4 and 4.

1. Rendering different patterns on iGPUs from different
vendors results in varying DRAM traffic, consistent
with graphical data compression.

3.4. The Intel i7-8700 iGPU: A case study

We now expand on the experiment in Section 3.3 for a
single iGPU: that of the Intel i7-8700.

Is there evidence that lossless compression is applied
to graphical data used as both inputs and outputs of GPU
rendering? What can we conclude about the compression
parameters? Can we attribute rendering time differences,
where present, to memory bus contention? And does com-
pression leave data-dependent footprint in the cache?

To answer these questions, we refine our experimental
setup. In the workload of Algorithm 1, each loop iteration
first executes GPU-WRITE that writes to a texture and then
executes GPU-READ that reads from a texture. In the ex-
periments below, we split this workload into two: a read
workload whose main loop executes only GPU-READ, and a
write workload whose main loop executes only GPU-WRITE.

Like the combined workload, the read and write work-
loads are parameterized by texture pattern. We arrange for

the read workload to read the same textures as in the
write workload. In the read workload we “pre-bake” the
input texture in OpenGL code executing before the main
render loop and excluded from instrumentation. We observe
identical results for the BLACK and GRADIENT patterns
(both apparently compressible) and for the RANDOM and
SKEW patterns (both apparently non-compressible). For the
following experiments, we run our workloads with all four
patterns, but report the collected data grouped by compress-
ible and non-compressible patterns.

Like the combined workload, the read and write work-
loads are also parameterized by iterations, the number of
times the main loop is run in rendering a frame. For the
following experiments, we vary iterations to understand how
GPU behavior changes as rendering complexity increases.

Compression ratio. First, we study the compression ratio
of iGPU reading and writing independently. We run the read
workload and write workload described above with our four
patterns (grouped as compressible and non-compressible),
varying iterations. For each experimental condition we
gather data from 400 seconds of execution.

On the read workload (Figure 2a), the DRAM read
traffic dominates, and DRAM traffic differences manifest
only from reads (not writes), reflecting the fact that the GPU-
READ program object reads a texture. However, on the write
workload (Figure 2b), DRAM write traffic dominates, and
DRAM traffic differences mainly come from writes, reflect-
ing the fact that the GPU-WRITE program object writes to
a texture. For each experimental condition, the DRAM read
traffic generated by the read workload is equal to the DRAM
write traffic generated by the write workload.4 Comparing
non-compressible to compressible patterns, we observe a
traffic ratio of 2 in reads (for the read workload) and writes
(for the write workloads) across settings of iterations.

2. A compression ratio of 2 on both iGPU reading and
writing is observed on an Intel i7-8700 processor.

Root cause of rendering time difference. Next, we study
how compression-induced traffic reduction affects rendering
time. For sufficiently large iterations settings, the frame
rendering time for our workloads exceeds the 16.7 ms floor.

4. The read workload has non-negligible DRAM write traffic, probably
because it writes to the framebuffer in rendering to the screen.

5

0 20 40
Number of iterations

0
500

1000
1500

DR
AM

 tr
af

fic
 p

er
 fr

am
e

(M
B)

DRAM read

0 20 40
Number of iterations

0
500

1000
1500

DRAM write
Compressible Non-Compressible

(a) Read workload

0 20 40
Number of iterations

0
500

1000
1500

DR
AM

 tr
af

fic
 p

er
 fr

am
e

(M
B)

DRAM read

0 20 40
Number of iterations

0
500

1000
1500

DRAM write
Compressible Non-Compressible

(b) Write workload
Figure 2. DRAM read and write traffic per frame (MB) vs. iterations on our Intel i7-8700 when running the read workload (subfigure a) and write workload
(subfigure b) on a compressible or non-compressible pattern. We observe a stable compression ratio of 2 on both DRAM read traffic and write traffic.

0 10 20 30 40
Number of iterations

0
5

10
15
20
25
30
35

DR
AM

 b
an

dw
id

th
 (G

B/
s)

Read workload

0 10 20 30 40
Number of iterations

0

5

10

15

20

25

30

35
Write workload

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Re
nd

er
in

g
tim

e
(m

s)

DRAM bandwidth Compressible
DRAM bandwidth Non-Compressible

Rendering time Compressible
Rendering time Non-Compressible

Figure 3. DRAM bandwidth (GB/s) and rendering time (ms) vs. iterations
on our Intel i7-8700 when running the read workload (left) and write
workload (right) on compressible and non-compressible patterns. The read
workload generates enough traffic to saturate the iGPU memory subsystem.
As a result, traffic reduction due to compression leads to a proportional re-
duction in the rendering time of compressible patterns. The write workload
does not saturate the iGPU memory subsystem. The rendering time delay
is due to running out of iGPU computation resources. Therefore, DRAM
bandwidth differences are not reflected in the rendering time.

In this regime, observed rendering time is a function of how
fast the iGPU can render each frame, and we can analyze
where the bottleneck is.

We find that, when the iGPU saturates the iGPU memory
subsystem, rendering time per frame correlates with the
DRAM traffic per frame, which (as shown above) varies
according to the compressibility of the rendered pattern.

In Figure 3, we plot the DRAM bandwidth (GB/s) and
rendering time (ms) for compressible and non-compressible
patterns as we increase iterations in the read workload and
write workload. When iterations is sufficiently high, the
DRAM bandwidth stops increasing for both workloads.

In that regime, for the read workload, we observe an
almost two-fold difference in rendering time between com-
pressible and non-compressible patterns, all else equal. Note,
the apparent compression rate of 2 implies that the arith-
metic intensity (in operations/byte) of compressible patterns
is actually about twice that of non-compressible. Since
rendering time is changing proportionally with arithmetic
intensity, the workload is memory-bandwidth bound. This
is consistent with both compressible and non-compressible
patterns having almost-equal DRAM bandwidths (which we
hypothesize corresponds to the iGPU memory subsystem’s

peak bandwidth). We conclude that the read workload sat-
urates the iGPU memory subsystem, and that the reduction
in DRAM traffic due to compression is a cause of reduced
rendering time for compressible patterns.

The situation is different for the write workload. Initially,
the compressible and non-compressible patterns display dif-
ferent DRAM bandwidth, and this trend persists even after
the bandwidth stops increasing at iterations = 4 (where
the difference in bandwidth between non-compressible and
compressible patterns settles to a factor of 2, in line with the
apparent compression ratio). We observe no rendering time
difference between the compressible and non-compressible
patterns. This means that the write workload is either
memory-latency or compute bound. There is evidence to
suggest that it is the latter: GPU-WRITE is computationally
heavy in creating textures from scratch and mainly issues
non-blocking write operations that are off the critical path.
As the iGPU memory subsystem remains under-utilized
(relative to the documented maximum bandwidth), the dif-
ferences in DRAM traffic resulting from compression does
not trigger any notable differences in rendering time.

As established above, our write workload cannot saturate
the iGPU memory subsystem. We now introduce extra mem-
ory contention alongside the write workload. This allows us
to saturate the iGPU memory subsystem and confirm that
the write workload’s pattern-dependent DRAM bandwidth
differences can manifest rendering time differences.

We use the memcpy workload from the stress-ng
benchmark suite5 to add system memory contention. With
iterations fixed to 10 and the texture pattern varied, we
measure the rendering time of the write workload as the
number of memcpy stressors increases on our Intel i7-8700.
For each combination of pattern and number of memcpy
stressors, we render the write workload for 10 000 frame
updates.

Figure 4 illustrates that when the number of memcpy
stressors increases, both compressible and non-compressible
patterns experience delays in rendering time. Notably, when
a sufficient number of memcpy stressors are launched, we
observe a difference in rendering time between compressible
and non-compressible patterns. Furthermore, this difference
increases with the number of memcpy stressors.

5. Online: https://github.com/ColinIanKing/stress-ng.

6

https://github.com/ColinIanKing/stress-ng

2 4 6 8 10 12
Number of memory stressor

35

40

45
Re

nd
er

in
g

tim
e

(m
s)

Compressible Non-compressible

Figure 4. Rendering time (ms) vs. the number of memcpy stressors on
our Intel i7-8700 when the write workload loads a compressible or non-
compressible pattern in a loop of iterations equals to 10.

4 8 12 16 20 24 28
Texture size (MiB)

8

10

12

LL
C

wa
lk

 ti
m

e
(m

s)

Compressible Non-Compressible

Figure 5. The LLC walk time (ms) of compressible and non-compressible
patterns vs. nominal texture size on our Intel i7-8700. The maximum
difference in LLC walk times occurs when the texture size is the size
of our LLC (12 MB).

3. When the iGPU memory subsystem becomes sat-
urated, memory bus contention variations caused by
graphical data compression lead to rendering time dif-
ferences on an Intel i7-8700 processor.

Last level cache walk time. On our Intel i7-8700, the iGPU
and CPU share the last level cache (LLC). We find that
the compression unit sits above the LLC and causes data-
dependent LLC access patterns, which can be captured by
CPU processes accessing their own data in memory.

Following the approach of Shusterman et al. [27], we
define an LLC walk time metric for contention over the LLC.
First, we allocate an LLC-sized buffer of 12 MB. Second,
we access the whole buffer repeatedly until it occupies the
entire LLC. Third, we run the write workload to create and
load a texture into the LLC. Finally, we record the time to
access the LLC-sized buffer again as our LLC walk time.
We access the buffer elements in a fixed but nonconsecutive
order to avoid triggering the prefetcher. When the entire
buffer is resident in the cache, we find that the walk time is
6 ms; when the entire buffer has been evicted from cache,
the walk time is 14 ms.

We investigate how the texture size affects the LLC
walk time of compressible and non-compressible patterns.
For each combination of pattern and texture size, we collect
2000 LLC walk time data points. In Figure 5, we plot the

LLC walk time (ms) of compressible and non-compressible
patterns as we increase the texture size. Note that the x axis
plots nominal texture size, assuming 32 bits per pixel and
no compression. There are three regimes of interest:

• When the nominal texture size is smaller than 12 MB,
the write workload does not fully utilize the LLC for
either the compressible or non-compressible patterns.
Here, we observe that the LLC walk time increases lin-
early with nominal texture size, and that the gap in LLC
walk time between compressible and non-compressible
patterns widens with nominal texture size. This is ex-
pected, as the magnitude of size difference (between
the original and compressed texture) increases with
nominal texture size.

• When the texture size equals 12 MB (the LLC size), the
write workload should fully utilize the LLC for the non-
compressible pattern. This matches our observations:
at 12 MB and beyond, the LLC walk time saturates
for non-compressible patterns (but not for compressible
patterns).

• Finally, when the texture size equals 24 MB, the write
workload should fully utilize the LLC for even the
compressible patterns (due to our previous finding of
a compression ratio of 2). This again matches our
observations: at 24 MB and beyond, the LLC walk time
saturates for compressible patterns.

4. When a compressed texture is read from DRAM into
the last-level cache on an Intel i7-8700 processor, it re-
mains compressed. Compression thus induces pattern-
dependent cache utilization, which can be captured by
the LLC walk time metric.

Intra- vs inter-page HW compression. We validate our
findings by measuring the number of memory pages ac-
cessed by our read workload and write workload. On
those experiments in which DRAM traffic per frame differs
between compressible and non-compressible patterns, the
number of memory pages accessed per frame is equal
between compressible and non-compressible patterns. We
conclude that the iGPU compression reduces the number of
cachelines accessed within a given memory page.

4. Reverse-Engineering Intel and AMD iGPU
Graphical Data Compression

The previous section provides evidence supporting the
existence of iGPU graphical data compression on multiple
processor platforms. However, it does not indicate exactly
when or where compression takes place. In this section,
we trace the entire software stack from OpenGL through
its backend Mesa, the Linux kernel and the iGPU. For
three separate processor platforms from Intel and AMD,
we demonstrate that the observable compression effects
are fully attributable to a mechanism on the iGPU that
is transparent to software on the CPU. Furthermore, we
fully reverse-engineer, for the first time, the undocumented

7

compression algorithms used by the iGPUs of Intel 8th
through 11th generation Core processors.

4.1. A minimal OpenGL example

Throughout this section we use a simple OpenGL pro-
gram to cause predicable behavior on the CPU and iGPU.
Our program defines a 3000 × 3000 pixel array with color
values with specified RGBA patterns described below. It
creates a texture from the pixel array. On each frame, it
executes a trivial program object that outputs this texture to
the screen. By tracing the execution of this simple program
through userspace and the kernel, we single out the GPU as
responsible for compressing the texture in memory.

For the GRADIENT pattern, our program fills the pixel
array row by row with a repeated set of 150 colors ranging
from (0, 0, 0, 0) to (149, 149, 149, 0). For the SKEW pattern,
our program instead uses 151 colors ranging from (0, 0, 0, 0)
to (150, 150, 150, 0), causing an offset striping pattern not
aligned to the image dimensions.

4.2. Intel iGPU tracing

We use the minimal OpenGL program from Section 4.1
to trace the interaction between Mesa and i915 and dump
the compressed texture. We further find evidence in Mesa’s
documentation supporting software-transparent, iGPU-based
graphical data compression on Intel platforms, although
Mesa is not aware of the exact compression algorithm. The
compressed texture we dump aligns with hints from Mesa’s
documentation and our measurements.

Tile-Y format. On both our 8th Gen and 11th Gen Intel
iGPUs, Mesa configures the tiling format of a texture as
the “tile-Y” format.6 As shown in Figure 6, the texture is
first broken into 4 KiB tiles, where each tile represents a
32 × 32 pixel region.7 When stored in memory, each tile
forms an 8×8 grid of 64 B cachelines arranged in a Y-major
configuration. Each cacheline corresponds to a 4 × 4 pixel
region.8 The tiled surface stored in memory is an upside-
down reflection of the visual content displayed on the screen.

Color Control Surface. On Intel GPUs, the Color Control
Surface (CCS) is an auxiliary surface that contains the
compression status of cacheline pairs. For the i7-8700, the
compression state is specified by 2 bits in the CCS [29,
p. 159], and for the i5-1135G7 it is specified by 4 bits [30,
p. 291].

According to Mesa documentation, in the tile-Y format-
ted main surface paired cachelines are horizontally adjacent
in image space, but have starting addresses that differ by
512 B or 8 cachelines. For example, in Figure 6, cachelines
1 and 9 in the tile are a pair.

6. For other tiling formats supported, see Intel’s reference manual [28].
7. A physical page is of size 4 KiB. A tile is 4 KiB such that moving

within a tile does not leave the same physical page in memory.
8. Online: https://docs.mesa3d.org/isl/tiling.html.

4

64B Cacheline
Row1Row2 Row4Row3

RGBARGBARGBARGBA

4 Pixels

1 9 17 25 33 41 49 57

2
3
4
5

6
7
8

TILE
44KB

Texture
32

32

Row1

Row2

Row3

Row4

4

1

Figure 6. Intel tile-Y formatted texture. Each tile has a size of 4 KiB and
is an 8 × 8 grid of 64 B cachelines arranged Y-major. Each cacheline
corresponds to 4× 4 pixels.

When creating a texture in OpenGL on our Intel iGPUs,
Mesa sets up a tile-Y formatted main surface and an auxil-
iary CCS placed after the main surface at the next 4 KiB
page-aligned boundary. Mesa allocates but does not fill
the surface and its CCS. Notably, the Mesa developers
have reverse-engineered how the compression state of a
cacheline pair is encoded in 2 bits in the CCS, relevant
for the i7-8700.9 For a cacheline pair, 0b00 represents
valid color data, 0b01 represents compressed color data
that fits in one cacheline, and 0b11 represents the clear
color (i.e., that the cacheline pair should be ignored). The
iGPU compresses cacheline pairs in the main surface with
a software-transparent, undocumented lossless compression
algorithm and stores the compression states in the CCS.
Since the compression is data-dependent, different patterns
may exhibit different memory access patterns.

Mesa and i915 texture creation. We run our minimal
OpenGL program under GDB and trace the Linux kernel
driver (i915) using KProbes. Most interaction between Mesa
and i915 are via Iris, the Mesa OpenGL driver for Intel.

Figure 7 presents our trace of Mesa and i915 when
creating a texture with specified color values in OpenGL.

To summarize our findings: Mesa initially owns
two header objects (y_bo and linear_bo) which
specify format properties for two texture buffers
that are allocated by the kernel and mapped into
Mesa’s address space at iris_bo_mesa_addr and
iris_bo_linear_mesa_addr (steps 1–4 in Figure 7).
These two headers (and their associated buffers) will
encode the same texture, but in two different formats
(y_bo: tile-Y with an auxiliary CCS for compression
states, linear_bo: linear RGBA without a CCS). At
this point, iris_bo_mesa_addr is filled with 0s
and iris_bo_linear_mesa_addr is filled with the
linearly RGBA-encoded pixel array data defined by our
program above.

Next, Mesa issues a non-blocking command to the iGPU
(using the above four objects as arguments) to preprocess
the buffers (steps 5, 6). We find that this command causes
the iGPU to asynchronously — and without any further
intervention by the CPU — fill iris_bo_mesa_addr
with a color-compressed tile-Y formatted texture, derived

9. Online: https://gitlab.freedesktop.org/mesa/mesa/-/blob/6d37f7f5ac9
dbfd28874c24bbb67d14e932b2dac/src/intel/isl/isl.h.

8

https://docs.mesa3d.org/isl/tiling.html
https://gitlab.freedesktop.org/mesa/mesa/-/blob/6d37f7f5ac9dbfd28874c24bbb67d14e932b2dac/src/intel/isl/isl.h
https://gitlab.freedesktop.org/mesa/mesa/-/blob/6d37f7f5ac9dbfd28874c24bbb67d14e932b2dac/src/intel/isl/isl.h

Mesa
address
space

i915
Kernel

address
space

Physical
pages

iris_bo

1.ioctl: create

gem_objecty_bo

2. physical
page

allocation
Page 1
Page 2

Page n
...gem_handle

Tile-Y +
ISL_AUX_USAGE

_CCS_E

3.ioctl: mmap
(gem_handle)

00000000
00000000
00000000
00000000

4.user-space
mappingiris_bo_mesa_addr

linear_bo

Linear +
ISL_AUX_USAGE

_None

01010100
02020200
03030300
04040400

iris_bo_linear_mesa_addr

Events Return
Address space

mapping Attribute Pointer

5.ioctl:submit
src: linear_bo

dst: y_bo
i915_request

6.Intel_ring
_begin

iGPU

8. check
iris_bo_mesa_addr

Compressed
surface

CCS

7. iGPU
finishes

Figure 7. Mesa and i915 trace of texture creation. For the texture cre-
ated in our minimal OpenGL program, i915 allocates two buffer objects,
linear_bo at address iris_bo_linear_mesa_addr and y_bo
at address iris_bo_mesa_addr, that correspond to the same tex-
ture in linear format and tile-Y format respectively (1, 2). i915 then
maps both buffers into Mesa’s address space (3, 4). After step 4,
iris_bo_linear_mesa_addr is filled with linearly RGBA-encoded
texture data and iris_bo_mesa_addr is filled with 0s. Later, Mesa is-
sues a non-blocking command to the iGPU to fill iris_bo_mesa_addr
(5, 6). The iGPU asynchronously — and without any further intervention by
the CPU — updates iris_bo_mesa_addr with a color-compressed tile-
Y formatted texture (7, 8).

from iris_bo_linear_mesa_addr, and correspond-
ingly update the CCS for y_bo (steps 7, 8).

Dumping compressed and uncompressed textures. Be-
cause textures are mapped into the Mesa address space,
we can easily dump them for analysis. In Figure 8, we
show the hexadecimal representation of the first 128 B of
the tile-Y formatted main surface and the first 16 B of the
auxiliary CCS for GRADIENT (compressible) and SKEW
(non-compressible) on our 8th Gen Intel iGPU.

With SKEW, the main surface contains pixels following
the tile-Y format, where the first 16 B contain the 4 pixels in
the first row and the second 16 B contain the 4 pixels in the
second row, etc. Its auxiliary CCS is all 0x00 suggesting
all the cacheline pairs contain valid color data. However,
with GRADIENT, the main surface contains uninterpretable
pixels that do not correspond to the input data in any
obvious way. Furthermore, only 64 out of the 128 B in the

main surface are non-zero. On the other hand, its auxiliary
CCS contains 0x55 (0b01010101), suggesting a cacheline
pair is compressed into one of the cachelines. The two
dumped CCS encodings are consistent with the observed
compression ratio of 2 in Section 3.4.

4.3. Intel GPU compression, reverse-engineered

We now showcase a complete reverse engineering of the
Intel graphical data compression/decompression algorithm.
We wrote a separate program to experiment with the iGPU’s
compression algorithm. Using this program, we reverse-
engineer the (previously undocumented) algorithm used in
8th, 9th, and 10th generation Intel SoCs (“UHD Graphics
630”) and the more sophisticated algorithm used in 11th
generation Intel SoCs (“Iris Xe Graphics”). Additionally,
we implemented our reverse-engineered decompression al-
gorithms and tested their correctness.

Tooling. We use our program to define a pixel array of a
specified size with color values specified as functions of
the pixel’s row, column, and array index (using a dc-like
syntax). We create a texture from the pixel array (following
the steps in Figure 7), and save the corresponding userspace
memory mapping (created by the Linux kernel i915 driver)
to a file.

We use our program to mount a chosen-plaintext attack
on the compression algorithm by observing if and how
a cacheline pair or a specified 4 × 8 pixel window was
compressed.

Though we do not rely on this capability in our reverse
engineering, we confirm that a variant of our program
would also allow us to mount a chosen-ciphertext attack.
The userspace mappings are writable; if we modify the
compressed representation of a pixel window and then use
an OpenGL call to recover the pixels corresponding to the
texture, the GPU decompresses the modified representation.

Notation. Compression acts on a 4×8 pixel window. Absent
compression, the left 4 × 4 pixels are stored in the first
64 B cacheline, the right 4 × 4 pixels are stored in the
second cacheline. Within each cacheline the pixels are stored
in row-major order starting from top left; the four color
channels for a pixel are stored together in RGBA order;
each channel holds a value between 0 and 255.

We write Ri, Gi, Bi, and Ai for the red, green, blue,
and alpha values of the ith pixel (1 ≤ i ≤ 32), interpreted as
elements of Z/256Z. When describing an operation applied
to all four channels, we will let X stand for one of R, G,
B, or A.

Eighth generation compression. The key idea behind In-
tel’s algorithm is to make a prediction about pixel values and
to transmit, for each pixel, the residual or error between the
prediction and the actual pixel value. For a color channel X ,
the prediction X̂ is chosen to be the minimum observed
value: X̂ ← mini Xi; for the ith pixel, the X-channel
residual xi is xi ← Xi − X̂ . The number of bits needed

9

08 00 00 00 20 09 00 40 12 20 09 6C 03 00 40 12
20 09 6C 03 00 40 12 20 09 6C 03 00 40 12 20 09
6C 03 24 41 5B 60 1B FC 07 24 41 5B 60 1B FC 07
24 41 5B 60 1B FC 07 24 41 5B 60 1B FC 07 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 01 01 01 00 02 02 02 00 03 03 03 00
8D 8D 8D 00 8E 8E 8E 00 8F 8F 8F 00 90 90 90 00
83 83 83 00 84 84 84 00 85 85 85 00 86 86 86 00
79 79 79 00 7A 7A 7A 00 7B 7B 7B 00 7C 7C 7C 00
6F 6F 6F 00 70 70 70 00 71 71 71 00 72 72 72 00
65 65 65 00 66 66 66 00 67 67 67 00 68 68 68 00
5B 5B 5B 00 5C 5C 5C 00 5D 5D 5D 00 5E 5E 5E 00
51 51 51 00 52 52 52 00 53 53 53 00 54 54 54 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0055 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

The tile-Y formatted
main surface

The auxiliary CCS

Gradient Skew

Figure 8. The first 128 B cacheline pair in the main surface and the first 16 B auxiliary CCS of GRADIENT and SKEW on an 8th Gen Intel iGPU. The
CCS of SKEW is all 0x00, which suggests that its main surface contains valid color following the tile-Y format. The CCS of GRADIENT is all 0x55,
which suggests that a cacheline pair in its main surface is compressed into one of the cachelines.

to encode the residual is ℓ(X) =
⌈
lg(maxi Xi −mini Xi)

⌉
if the Xi are not all equal, or ℓ(X) = 0 otherwise.

The compressed encoding begins with a 48-bit header:
1 bit per channel to encode a skip bit, set to 1 if ℓ(X) = 0
(i.e., all “no X residual is needed”), or 0 otherwise; 8 bits
per channel for the prediction X̂; and 3 bits per channel to
encode ℓ(X)− 1 (or 0 if the corresponding skip bit is set).
Because the encoding’s goal is to fit the information about
32 pixels into a single 64 B cacheline, the 48-bit header
leaves room for

⌊
(8 ·64−48)/32

⌋
= 14 bits of residual per

pixel. Whether this budget suffices to encode the residuals,
i.e., whether ℓ(R) + ℓ(G) + ℓ(B) + ℓ(A) ≤ 14, is what
determines whether a cacheline pair is compressed.

When compression is applied, each pixel is always allo-
cated 14 bits: ℓ(R) bits to encode ri = Ri− R̂, ℓ(G) bits to
encode gi, ℓ(B) bits to encode bi, ℓ(A) bits to encode ai,
and 0 padding if necessary.

The idea behind the compression algorithm is described
in an Intel patent [31], but the encoding details are different.

Eleventh generation compression. Compression in 11th
generation SoCs is built on the same prediction-and-residual
idea as in previous generations, but with a few minor
differences and three substantial new features that make it
meaningfully more capable.

We begin by listing the minor differences. First, the
fixed header has a different format: a 1-bit color transform
flag (described below); 8 bits that are usually all 0 (except
in a special compression mode described below), followed
by 4-bit encodings of ℓ(R), ℓ(G), and ℓ(B); and, finally,
the 32-bit prediction, for a total of 53 bits. The parameter
ℓ(A) is not explicitly encoded; instead, whatever bits in the
per-pixel field are not used for the color channel are used
as the alpha-channel residual. Second, pixels are described
not in row-major order as in 8th generation compression
but in 2 × 2 blocks, as shown in Figure 9. This is even
though uncompressed cachelines in the legacy tile-Y format
continue to list pixels in row-major order.

In the compression setting most similar to the 8th gener-
ation format, 32 pixels from two cachelines are compressed
to fit a single cacheline, with each pixel allotted 14 bits.
However, this is just one of several settings supported by

(a) 8th Gen (b) 11th Gen
Figure 9. Encoded pixel order within a 4×4 pixel window in eighth gener-
ation and eleventh generation compression. Eighth generation compression
pixel order is row-major as in uncompressed legacy tile-Y. Eleventh gen-
eration compression pixel order follows a Z-order curve.

11th generation GPUs. Whereas in previous generations
each cacheline pair had 2 bits of metadata, with one value to
signify compression, the 11th generation reserves 4 bits of
metadata; different metadata values signify different com-
pression settings. The 128-to-64 setting just described cor-
responds to metadata value 0x6.

Metadata value 0x1 corresponds to a more aggressive
128-to-32 setting that fits information about all 32 pixels
into the first half of one cacheline, with a per-pixel budget
after the header of 6 bits. Metadata value 0x2 corresponds
to compression of the first cacheline only (the left 4 × 4
pixel half of the window) in place from 64 B to under
32 B, leaving the second cacheline unchanged, with a per-
pixel budget of 12 bits; metadata value 0x8 corresponds
to compression of the second cacheline only, leaving the
first cacheline unchanged, again with a per-pixel budget of
12 bits; and metadata value 0xa corresponds to separate
64-to-32 compression of each cacheline, like 0x2 and 0x8
combined. The metadata values, but not the compression
algorithm itself, are documented in Intel’s manuals [32,
pp. 128–130].

We do not know what benefit is obtained from packing
the information in a 64 B cacheline into 32 B.

A major limitation of the 8th generation compression
format is that each color channel is encoded independently,

10

and compression cannot take advantage of correlation be-
tween channels. For example, compressed grayscale pixel
windows (where Ri = Gi = Bi) will store the same residual
three times for each pixel. The 11th generation compression
algorithm improves on this by supporting a color trans-
formation to a colorspace an Intel patent application calls
“BCoCg” [33] that decorrelates the color channels.10

To transform colors in the BCoCg colorspace back to
RGB, the decompression algorithm computes:

Ri ← Coi +Bi Gi ← Cgi +
⌊
(Bi +Ri)/2

⌋
. (1)

Note that (n, n, n) in the RGB colorspace corresponds to
(n, 0, 0) in the BCoCg colorspace. This is an example of
decorrelation made possible by the transform.

The first bit in a compressed cacheline specifies the
colorspace used: 1 for BCoCg, 0 for RGB. When BCoCg
is used, the header encodes ℓ(B), ℓ(Co), and ℓ(Cg), in
that order; the fixed-width field encoding a pixel’s residual
likewise encodes the residuals for B, Co, Cg and, with
whatever bits remain, A, in that order.

Finally, in 128-to-64 (0x6) mode, the GPU can take
advantage of uniform 2 × 2 blocks, i.e., ones in which all
four pixels have the same color values and could therefore
in principle be described by a single residual. A cacheline
pair describes eight 2 × 2 blocks; if four of these blocks
are uniform, the number of residuals needed drops from
32 to 20, and per-residual bit budget rises from 14 to⌊
(8 · 64 − 53)/20

⌋
= 22. Bits 2 through 9 of the header

(otherwise all 0) identify the uniform blocks: A 1 bit means
the corresponding block (in Z order) is uniform. In a par-
ticularly Intel touch, the 22-bit residual fields are split. The
first 14 bits of all twenty residuals are encoded like in usual
mode 0x6, for a total of 280 bits; then the last 8 bits of all
twenty residuals, for a total of 160 additional bits.

One subtle point concerns the handling of arithmetic
wraparound and negative color values. In the RGB col-
orspace, neither 8th generation nor 11th generation GPUs
will take advantage of wraparound for compression. So,
for example, color values 1, 2, 254, and 255 will have a
prediction of 1 and 8-bit residuals rather than a prediction
of 254 and 2-bit residuals. By contrast, equation (1) for
colorspace transformation to Co and Cg is evaluated by
embedding Z/256Z in Z. So, for example, and Ri = 1 and
Bi = 3 will produce Coi = −2, whereas Ri = 255 and
Bi = 1 will produce Coi = 254.

4.4. AMD iGPU tracing

We perform a similar tracing on an AMD iGPU (Vega 8
in an AMD Ryzen 7 4800U). As before, we trace Mesa and
the relevant driver (amdgpu) to demonstrate how a texture
is formatted in memory and compressed.

Mesa and amdgpu texture creation tracing. The process
of texture creation on the AMD iGPU follows a path like

10. Intel’s colorspace is related to, but not the same as, the YCoCg-R
colorspace used in the HEVC screen content coding extensions [34].

Events Return Attribute Pointer

Mesa
address
space

amdgpu
Kernel

address
space

Address space
mapping

Physical
pages

Page 1
Page 2

Page n
...

 non_linear + DCC

Radeon_surf amdgpu_bo:
NO_CPU
_ACCESS

1.ioctl: create
(NO_CPU
_ACCESS)

2. physical
page

allocation

bo_handle

3.ioctl:
cs_submit

Radeon_surf
(bo_handle)

4. kprobe:
amdgpu_bo 5. push job

7. kprobe:
amdgpu

_bo_kmap
(amdgpu_bo:

CPU
_ACCESS)

iGPU

6. iGPU
finishes

Compressed
surface

DCC

Figure 10. Mesa and amdgpu trace of texture creation. For the texture
created in our minimal OpenGL program, amdgpu allocates a buffer object
amdgpu_bo with a NO_CPU_ACCESS flag (1, 2). Mesa submits a non-
blocking command to the iGPU for filling it (3–5). After the iGPU writes
to the amdgpu_bo, we remove the NO_CPU_ACCESS flag and invoke
amdgpu_bo_kmap() to force a kernel mapping (6, 7) that we can dump.

that of Intel’s. We observe that the iGPU is responsible for
compression on AMD, as with Intel. Indeed, the compressed
texture does not have a Mesa address space mapping or a
Linux kernel mapping throughout its lifecycle. To be able to
read the texture, we developed a kernel module that traces
the buffer object amdgpu_bo representing the tiled texture
in the kernel. After the iGPU writes to the texture, we update
the buffer object to remove the NO_CPU_ACCESS attribute,
then force a kernel address space mapping by invoking
amdgpu_bo_kmap(). We are then able to dump the tiled
texture via the kernel address space mapping. Figure 10
illustrates this process.

AMD tiling format, reverse-engineered. We use our mini-
mal OpenGL program to create a texture with the RANDOM
pattern in Figure 1. Since RANDOM is not compressible on
our AMD iGPU, we use the tiled surface and the linear
pixel values to reverse-engineer the tiling format. We present
our result in Figure 11. Like Intel iGPUs, our AMD iGPU
divides a texture into 4 KiB tiles, which are 32 × 32 pixel
regions. Unlike on Intel iGPUs, each tile is broken down into
256 B blocks of dimension 8×8. The pixels in a 256 B block
are rearranged in 4 cachelines and compressed together.

Delta Color Compression. AMD GPUs implement
what AMD documentation calls Delta Color Compression
(DCC) [16]. Each 256 B (8×8 pixels) block is accompanied

11

4

Row1
Row2

Row3
Row4

64B Cacheline

RGBARGBARGBARGBA

4 Pixels

8
256B Block

0 8 36 44
1 9 37 45
2 10 38 46
3 11 39 47
4 12 32 40
5 13 33 41
6 14 34 42
7 15 35 43
24 16 60 52
25 17 61 53
26 18 62 54
27 19 63 55
28 20 56 48
29 21 57 49
30 22 58 50
31 23 59 51

TILE

8 0

1

2

3

8

2

4KB 32

32

1

2

3

4

5

6

7

8

Texture

Row2

Figure 11. AMD tile formatted texture. Each tile has size of 4 KiB and
is a 4 × 4 grid of 256 B blocks. Each block consists of 4 cachelines and
corresponds to 8 × 8 pixels. Each cacheline is a region of 2 × 8 pixels.
All cachelines are arranged in an undocumented combination of Y-major
and X-major formats. We reverse-engineer the format and document here.

by 8 bits of DCC metadata. Similar to Intel CCS, the DCC
metadata is placed right after the tiled main surface at the
next 4 KiB page-aligned boundary.

The compressed and uncompressed texture on an AMD
iGPU based on the 5th Gen GCN architecture. We
dump the tile formatted main surface and the DCC metadata
for both the GRADIENT and SKEW patterns on our AMD
iGPU (5th Gen GCN). Both GRADIENT are SKEW are
compressible on our AMD iGPU. However, they result in
different DCC metadata encodings: the GRADIENT encoding
consists solely of 0x28, whereas the SKEW encoding is a
combination of 0x28 and 0xcc.

As explained in Section 4.5, 0x28 metadata means
256 B to 64 B compression, achieving a compression ratio
of 4, whereas 0xcc means (one configuration of) 256 B to
128 B compression, resulting in a compression ratio of 2.
This is consistent with the compression ratios observed
for GRADIENT and SKEW in Section 3.3 (Table 2). Partial
dumps of GRADIENT and SKEW are shown in Figure 12.

4.5. AMD GPU compression, reverse-engineered

As noted in Section 4.4, AMD compression applies to
8 × 8 pixel tiles made up of four cachelines and described
by 8 bits of metadata.

In fact, the AMD compression primitive applies sepa-
rately to each of four 2× 8 pixel subtiles. The length of the
compressed representation of a subtile can vary between 2 B
and (in principle) 74 B.

The GPU’s strategy is to pack k consecutive sub-
tile representations into one cacheline, leaving the next
k − 1 cachelines unused. Let Li be the length (in bytes)
of the compressed representation of the ith subtile. If
L1 + L2 + L3 + L4 ≤ 64, then the first cacheline will
encode all four subtiles, leaving the other three cachelines
unused (a situation we can describe as 4:0:0:0). Otherwise,
if L1 + L2 + L3 ≤ 64 then the first cacheline will encode
the first three subtiles, the next two cachelines will be
unused, and the fourth cacheline will hold the last subtile
uncompressed (3:0:0:1). Other possible arrangements are
1:3:0:0, 2:0:2:0, 2:0:1:1, 1:2:0:1, 1:1:2:0, and 1:1:1:1, the
last of these meaning no part of the tile is compressed.

Codewords are concatenated to make eight bits of meta-
data that describe the subtile arrangement into cachelines:
codeword 0b11 stands for 1, 0b0110 for 2:0, 0b001100 for
3:0:0, and 0b00101000 for 4:0:0:0. Because this code is
prefix-free when read from the lsb, metadata can be parsed
unambiguously. For example, metadata 0xcc (0b11001100)
means 3:0:0:1. (An AMD patent describes a similar but
more flexible metadata encoding [35, Fig. 4].) In addition,
metadata 0b01000000 indicates an all-black tile, and meta-
data 0b00010000 indicates a solid color other than black.

Knowing how many compressed subtiles a cacheline
holds, one can parse the cacheline unambiguously. The sub-
tile representations are interleaved: the first header bytes for
all subtiles, the second header bytes for all subtile windows,
the deltas for all subtile windows. There can be unused
bytes at the end of a cacheline; these are apparently left
uninitialized.

Whereas uncompressed pixels are stored in the usual
RGB colorspace, compression is always attempted in a
GCrCb colorspace that, like Intel’s BCoCg colorspace,
decorrelates the color channels. To translate from GCrCb to
RGB, one computes Ri ← Cri+Gi and Bi ← Cbi+Gi. The
GCrCb colorspace is documented in an AMD patent [35].

The fundamental object of compression is a 2 × 4-
element window, consisting of the values in a single color
channel of the pixels on the left or right half of a subtile.
Each 2× 8 pixel subtile includes eight such windows.

The first header for a subtile is 16 bits that specify,
first, whether or not each window is described by a byte in
the second header, and then whether or not each window is
constant, i.e., has all entries equal. The second header for
a window includes descriptive bytes whose interpretation
is explained below. Finally, for each non-constant window,
deltas describe how individual window color values relate.

In AMD’s compression format, each window entry is
computed as a delta from a neighboring entry, rather than
all deriving from the same base value. The neighbor rela-
tionships are illustrated in Figure 13.

Deltas are represented as a sign bit followed by up to
seven value bits; a delta with value x and sign bit set is inter-
preted as 255− x. There is one exception: When a window
has a second header byte, the first delta is nonnegative and
its sign bit is instead treated as the least-significant value
bit. A window’s deltas are stored bitsliced: All eight sign
bits, then all eight least significant value bits, and so on.

The window’s second-header byte, when present, speci-
fies both the base X0 to which the first delta is added and the
number of value bits for delta representation. Specifically,
there are as many delta value bits as the header byte has
trailing 0 bits, and X0 is equal to the base after the least-
significant 1 bit is flipped to a 0. So, for example, a 0x70
header specifies deltas encoded using (a sign bit and) four
value bits, and X0 = 96.

Every entry in a constant window is equal to that win-
dow’s second-header byte, if present; to 0 for a left-side
window without a second-header byte; and to the top right
value of the corresponding left-side window for a right-side
window without a second-header byte.

12

00: 41 FC 41 FC 41 FC 41 FC 02 FF 02 FF 02 FF 02 FF
10: 00 BA 00 BB 00 BA 00 BB 00 BA 00 BB 00 BA 00 BB
20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*
*
*
*
*
*
*

00: 41 FC 41 FC 41 FC 80 FF 60 FF 60 FF 44 BA 00 44
 10: 44 44 44 44 44 BB 00 44 44 44 44 44 45 FF 45 01
 20: 00 45 44 FF 44 00 00 44 45 FF 45 00 00 44 44 FF
30: 44 00 00 44 00 00 00 00 00 00 00 00 00 00 00 00
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*
c0: 1F 1F 1F FF 20 20 20 FF 21 21 21 FF 22 22 22 FF
d0: 0B 0B 0B FF 0C 0C 0C FF 0D 0D 0D FF 0E 0E 0E FF
e0: 23 23 23 FF 24 24 24 FF 25 25 25 FF 26 26 26 FF
f0: 0F 0F 0F FF 10 10 10 FF 11 11 11 FF 12 12 12 FF

CC CC 28 28 CC 28 CC CC 28 28 CC CC 28 28 28 CC28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28

The tile formatted
main surface

The DCC

Gradient Skew

Figure 12. The first 256 B block in the main surface and the first 16 B chunk of DCC metadata of GRADIENT and SKEW on an AMD iGPU based on the 5th
Gen GCN architecture. Three cachelines in the first 256 B block of SKEW are compressed into one cacheline, leaving the fourth cacheline uncompressed,
and resulting in a compression ratio of 2. The first 256 B block of GRADIENT is compressed into one cacheline, resulting in a compression ratio of 4.
The compression ratio is consistent with our observation in Section 3.3 (Table 2). The DCC of GRADIENT is all 0x28, whereas the DCC of SKEW is a
combination of 0x28 and 0xcc.

X0 ±∆1 ±∆2

±∆3

±∆4

±∆5 ±∆6

±∆7

±∆8

Figure 13. Interpretation of encoded deltas for a 2×4 pixel window in AMD
GPU compression. If a header byte for the window is present, it explicitly
encodes the base X0 value for ∆1. If a header byte for the window is
absent, X0 for a left-side window is 0 and for a right-side window is the
value of the top right pixel of the window to the left. Deltas are sign-and-
magnitude encoded except that, in the presence of an explicit base X0, ∆1

is encoded as a nonnegative value, with the sign bit interpreted as the lsb.

5. Side-Channel Attacks Exploiting Graphical
Data Compression

In this section, we demonstrate proof-of-concept
(PoC) cross-origin pixel stealing attacks that compromise
Chrome’s same-origin policy by utilizing the software-trans-
parent GPU graphical data compression leakage channel.
Our PoCs can steal pixels from a cross-origin iframe by ei-
ther measuring the rendering time difference due to memory
bus contention or by using the LLC walk time metric to infer
the GPU-induced CPU cache state changes. We demonstrate
successful pixel stealing on iGPUs and (surprisingly) on
discrete GPUs. Finally, we include an end-to-end PoC in
a real-world scenario, stealing Wikipedia usernames to de-
anonymize users (Section 5.4).

5.1. Experimental setup

We run experiments to confirm that Chrome (version
112) can trigger iGPU compression on our Intel i7-8700
(cf. Table 1). To monitor the DRAM traffic, we use the
same methodology as detailed in Section 3.1. However, from
JavaScript we can only access coarse-grained timers.

For the feasibility experiments in Section 5.2, we build
Chrome with debug symbols (v8_symbol_level = 2),
and use uprobe to expose the CPU time-stamp counter to
Chrome. The time-stamp counter allows us to synchronize
the rendering process and the sampling process and pinpoint
the block of sampled data that belongs to the same frame.

We stress that the attacks evaluated in Sections 5.3 and
5.4 target the official release of Chrome without any cus-
tomization and call only the usual JavaScript timers.

5.2. Measuring iGPU compression from Chrome

Similar to prior work [23], [36], [37], [25], [24], we
build a web-page framework for violating the same-origin
policy on cross-origin iframes. Specifically, the same-origin
policy disallows a containing web page from accessing the
content inside a cross-origin iframe. By applying SVG filters
to the iframe, we can extract its content pixel by pixel due
to iGPU compression side effects.

Our framework isolates, binarizes, and expands a se-
lected single cross-origin pixel to a 2000 × 2000 pixel
iframe that is still cross-origin. At this point, the enlarged
iframe is either all black or all white depending on the
target pixel. We then render an SVG filter stack on top of
the iframe that creates compressible or non-compressible
textures depending on the target pixel color.

Compression-centric SVG filter stack. We design an
SVG filter stack that maximizes the difference in DRAM
traffic between black and white target pixels in the pres-
ence of compression. We use feTurbulence to create
2000 × 2000 pixels of deterministically generated random
noise. Then we use feBlend in multiply mode to
combine the noise with the 2000 × 2000 expanded and
binarized cross-origin pixel. This is a mux that outputs all
black if the iframe is black, or noise if the iframe is white.
We chain up many layers of feBlendmultiply with the
noise and the expanded pixel iframe as inputs.

Stated algorithmically, we ask the browser to perform
Algorithm 2, where iframe is the 2000 × 2000 expanded

13

Algorithm 2: SVG filter stack.
Input: iframe, layers

1 noise← TURBULENCE();
2 x1 ← BLENDMULTIPLY(noise, iframe);
3 for i← 2 to layers do
4 xi ← BLENDMULTIPLY(noise, xi−1);
5 end

and binarized cross-origin pixel, and layers is a parameter
we can vary to increase the workload complexity.

When the target pixel iframe is all black, all intermediate
xis are also all black, and are compressible on our tested
platforms. Conversely, when the iframe is all white, all in-
termediate xis become noise, which is non-compressible on
our tested platforms. A compressible or non-compressible xi

induces a different amount of DRAM traffic due to iGPU
compression. The malicious containing webpage can then
infer the target pixel color by measuring the traffic difference
through rendering time or CPU LLC cache side effects.

Compression SVG filter stack: DRAM traffic. To confirm
that our SVG filter stack induces our leakage channel in
Section 3, we increase the complexity of our workload by
increasing the number of filter layers. We render our filter
stack in an infinite loop of requestAnimationFrame
for 400 seconds and measure the induced DRAM traffic and
individual frame rendering times.

Figure 14a plots the DRAM read and write traffic per
frame versus layers and Figure 14b plots the DRAM band-
width and rendering time from this experiment. We observe
a compression ratio of 2 in both DRAM read and write
traffic, reflecting that the intermediate xis are compressible
when the binarized target pixel is black, and the filter stack
writes to and reads from intermediate values in a chain.
Our Chrome workload exhibits a rendering time difference
between targeting a black and white cross-origin pixels,
despite not saturating the iGPU memory subsystem. This
suggests our Chrome workload is a combination of the read
and write workloads in Section 3.4, with the workload being
computationally bounded but the contention on the memory
bus being significant enough to influence the rendering time.

With a black pixel, DRAM bandwidth average and stan-
dard deviation decrease as layers increases. This is because
of amortization of a large I/O transfer that happens at the
start of every frame refresh. As layers increases, the con-
tribution to average DRAM bandwidth from our SVG filter
stack eventually outweighs the initial I/O transfer, and the
DRAM bandwidth average and standard deviation decrease.

Compression SVG filter stack: LLC walk time. Since our
SVG filter stack reads from and writes to the xis, the LLC
walk time metric in Section 3.4 should apply here as well.

To maximize the LLC walk time difference between
compressible and non-compressible xis, we set the size of
our enlarged, binarized target pixel iframe to match the size
of our Intel i7-8700 LLC. To avoid having the iGPU be idle,

and allow other system activities disrupt the induced LLC
access pattern, we adjust layers to ensure that the SVG filter
stack takes more than 16.7 ms to render. We measure the
LLC walk time from Chrome using the same methodology
as Shusterman et al. [27] immediately after rendering.

In Figure 15, we show the LLC walk time distribution
when the binarized cross-origin pixel is black or white.
We observe distinct distributions because iGPU compresses
black intermediate xi layers, causing fewer LLC evictions.

Correctness check. To further confirm we are observing
the iGPU compression effect, we experimentally disabled
Vulkan in Chrome to force OpenGL usage.11 We then
attached GDB to the Chrome GPU process and extracted
the starting all-black or all-white textures for the iframe,
as well as the compressed-black or uncompressed-turbulent
results of SVG filter stack rendering.

5.3. Proof-of-Concept pixel stealing attack

Having validated the side-channel effects of our
compression-centric SVG filter stack, we build end-to-end
pixel stealing attacks on stock Chrome. We tested both the
LLC walk time and rendering time channels for this PoC.
The PoC first profiles the channel on the iGPU with attacker
controlled black or white cross-origin pixels. Our target is a
cross-origin 48-pixel square checkerboard, which allows us
to observe stability as well as transitions.

We have a 1-pixel square div scroll over the checker-
board column by column. For each cross-origin pixel, we
use the same methodology in Section 5.2 to expand it to
an iframe and render our SVG filter stack on the iframe
for a tunable duration, and then collect frame rendering
times during execution or the LLC walk time afterwards.
Finally, we exclude outliers by removing the top and bottom
5 percent of collected data and comparing the mean average
with the thresholds from profiling to classify the target pixel.

As we have noted, the PoC design is similar to that used
in prior work [23], [36], [37], [25], [24], but with a novel
side channel. For completeness, we illustrate the pipeline of
our PoC in Figure 16.

PoC results. We test our PoC on heterogeneous hardware,
tweaking the iframe size, the filter stack layers, and per-
pixel rendering duration for each platform.12 Our PoC can
successfully reconstruct the cross-origin checkerboard on
integrated GPUs from Intel, AMD, Apple, and Arm, and
on two discrete GPUs from Nvidia. We have preliminary
results that confirm that the amount of memory traffic varies
based on the target pixel color for our Mali iGPU and
our Nvidia discrete GPUs. The accuracy and throughput
vary across platforms due to the underlying compression
algorithm, hardware specifications, and our tuning of param-
eters. We observe the best PoC throughput on the platform

11. We observe the same compression effect in Chrome with Vulkan
enabled and disabled.

12. All platforms except for the Google Pixel have a 60 Hz frame rate,
and the Google Pixel has a 90 Hz frame rate.

14

0 10 20 30
Number of layers

0

200

400

DR
AM

 tr
af

fic
 p

er
 fr

am
e

(M
B)

DRAM read

0 10 20 30
Number of layers

0

200

400

DRAM write
Black White

(a) Read and Write Traffic

0 10 20 30
Number of layers

10

20

DR
AM

 b
an

dw
id

th
 (G

B/
s) DRAM bandwidth

0 10 20 30
Number of layers

20

40

Re
nd

er
in

g
tim

e
(m

s) Rendering time
Black White

(b) Bandwidth and Rendering Time
Figure 14. DRAM read and write traffic per frame (MB) vs. layers, and DRAM bandwidth (GB/s) and rendering time (ms) vs. layers on our Intel i7-8700
when Chrome renders the compression SVG filter stack on an iframe expanding a binarized cross-origin pixel. We observe our Chrome workload as a
combination of the read and write workloads in Section 3.4.

Table 3. POC RESULTS VIA BOTH RENDERING TIME AND LLC WALK TIME SIDE CHANNEL ON HETEROGENEOUS HARDWARE PLATFORMS.

SoC & iGPU Chrome version Operating system Screen resolution
Rendering time side channel LLC walk time side channel

Throughput
(pixels/second) Accuracy Throughput

(pixels/second) Accuracy

Intel i7-8700 (Desktop)
Intel UHD 630 112 64-bits Ubuntu 22.04

(kernel 5.15) 1920 × 1080 2.0 99.6% 2.0 98.3%

Intel i7-12700K (Desktop)
Intel UHD 770 111 64-bits Ubuntu 22.04

(kernel 5.19) 1920 × 1080 0.5 93.8% 2.7 96.2%

Intel i7-10610U (Laptop)
Intel UHD 620 112 64-bits Windows 11 Pro 1920 × 1080 1.0 98.3% 0.5 94.3%

Intel i7-10510U (Laptop)
Intel UHD 620 111 64-bits Ubuntu 22.04

(kernel 5.19) 1920 × 1080 1.2 95.6% 1.4 96.9%

AMD Ryzen 7 4800U (Desktop)
AMD Radeon Vega 8 111 64-bits Ubuntu 22.04

(kernel 5.19) 1920 × 1080 6.2 93.4% 2.1 97.5%

AMD Ryzen 5 7600X (Desktop)
NVIDIA GeForce RTX 2080 Super 109 64-bits Windows 10 Pro 3440 × 1440 0.5 99.6% N/A N/A

Intel i7-11800H (Laptop)
NVIDIA GeForce RTX 3060 Laptop 112 64-bits Windows 11 Home 3840 × 1600 0.5 96.9% N/A N/A

Apple M1 Mac Mini (Desktop)
Apple 8-core GPU 109 64-bits Ventura 13.1 1920 × 1080 0.2 96.8% N/A N/A

Google Tensor (Google Pixel 6)
Arm Mali G78 MP20 112 64-bits Android 13 1080 × 2040 0.2 68.6% N/A N/A

15 16 17 18 19
LLC walk time (ms)

0.0

0.2

0.4

Pr
ob

ab
ilit

y

Black White

Figure 15. LLC walk times on our Intel i7-8700 when Chrome renders
the compression SVG filter stack on an iframe targeting a binarized cross-
origin pixel.

under test with the most aggressive implementation of GPU
compression: the AMD Ryzen 7 4800U. On platforms with
powerful DRAM controllers, e.g., Intel i7-12700K, the LLC
walk time channel gives significantly better results than
the rendering timing channel. On all platforms except on

the Google Pixel, our accuracy is higher than 90% with a
throughput ranging from 0.2 to 6.2 pixels per second.

This throughput is much faster than prior works that
target SVG filters rendered on the GPU [24], [25]. The
throughput from Taneja et al. ranges from 0.04 to 0.12 pixels
per second, with an accuracy of around 70%. The throughput
from Wang et al. ranges from 0.3 to 1.2 pixels per second,
with an accuracy of around 95%.

5.4. Wikipedia username stealing example

As a proof-of-concept for a realistic attack, we demon-
strate stealing a username. In this scenario the target iframe
is Wikipedia, which shows the user’s username in the top
corner. We run this PoC with multiple browser windows
open, with one playing a YouTube video during the attack.
Figure 17 shows the results of our attack on an Intel i7-8700
and an AMD Ryzen 7 4800U. We calculate the accuracy
based on the ground truth after color binarization. Our attack
is unoptimized, but completes in 30 minutes on the Ryzen

15

iframe with
embedded webpage

Scale & Color
binarization

SVG filterstack
rendering

Compare with
thresholds

Target pixel is white

Target pixel is black

Figure 16. The pixel stealing Proof-of-Concept attack pipeline. We embed a cross-origin webpage in an iframe. We isolate and binarize a single cross-
origin pixel from that iframe, and then expand it. We apply our compression-centric SVG filter stack on top of expanded pixel to create compressible or
non-compressible textures depending on the target pixel’s color. We use either the rendering time or the LLC walk time to infer the target pixel’s color.

(a) Ground truth (b) AMD (c) Intel
Figure 17. Pixel stealing PoC for deanonymizing a user, run with other tabs
open playing video. “Ground Truth” is the victim iframe (Wikipedia logged
in as “Yingchenw”). “AMD” is the attack result on a Ryzen 7 4800U after
30 minutes, with 97% accuracy. “Intel” is the attack result for an i7-8700
after 215 minutes with 98% accuracy.

with 97.0% accuracy. The Intel attack is significantly slower,
at 215 minutes with 98.3% accuracy. Unlike previous works
that are sensitive to noise in DVFS oscillation [24], [25],
our PoC succeeds even in the presence of system noise,
showcasing robustness.

6. Discussion

As display resolutions and frame rates increase, so too
do GPU memory bandwidth demands. Graphical data com-
pression is a natural response to these increasing bandwidth
demands and, as we have documented, one deployed by
vendors across the industry. It is natural for GPU vendors
to choose software-transparent compression. The software
stack of graphical rendering is complex and has many stake-
holders; the less that the software stack must be modified
to enable compression, the more easily can compression
schemes be deployed and improved with new GPUs.

But data-dependent optimizations made by hardware and
transparent to software create side channels that software
is ill-positioned to mitigate. Making matters worse, while
this paper considered compression applied to 2D textures,
there is ample evidence (e.g., [35], [38]) suggesting that
vendors are “dreaming bigger”, i.e., considering applying
compression to other forms of graphical data and to other

places in the graphics pipeline (e.g., the frame buffer [18]).
At worst, this creates a dire situation where all graphical
data is vulnerable, regardless of what we do to harden GPU
software (e.g., rewriting for constant time doesn’t help).

What is to be done?
Disabling compression across the board is likely un-

workable. Likewise, security through obscurity is clearly
ineffective; as we have shown, with modest reverse-
engineering effort, it is possible to reconstruct the compres-
sion algorithms implemented by Intel and AMD iGPUs.
Using visually-lossy (data/pattern-independent) compres-
sion as a fallback when lossless compression fails in or-
der to maintain a data-independent compression ratio, as
proposed by some vendors (e.g., [39]), would close the
specific side channels we exploit but may leave others, such
as Hertzbleed [40], open; in addition, lossy compression
applied at each step of a complicated rendering stack may
degrade the output image unacceptably. Finally, one could
consider exploiting existing implementation idiosyncrasies.
For example, we found that Intel GPUs support compression
on tile-Y surfaces but not on tile-X surfaces. This enables
users to unilaterally opt a buffer out of compression on
today’s GPUs. But such approaches are inherently brittle
and could stop working on future hardware or even after a
stray microcode patch.

We believe, instead, that the right solution is to broaden
the contract between (GPU) hardware and (graphics) soft-
ware. For example, by exposing a policy such as “disable
data-dependent compression” for a specific buffer, variable,
etc. Due to the nature of compression, there seems to be an
interesting design space governing such policies. Indeed, a
crucial difference between GPU compression and TLS and
HTTP compression (as exploited in the CRIME attack and
its successors [7], [8], [9]) is the presence of metadata gov-
erning compression of small blocks of graphical data. One
could imagine a future contract augmenting such metadata to
allow software to opt sensitive regions out of compression.

Importantly, the above type of abstract but explicit
(software-visible) contract would carry benefits for multiple

16

stakeholders in the GPU ecosystem. For example, it need
not expose vendor secrets (e.g., the specific compression
algorithms used).13 Moreover, it trivially generalizes beyond
compression (think “disable data-dependent optimizations”)
and could likely leverage existing techniques (e.g., from the
information flow literature) to facilitate deployment.

7. Related Work

7.1. Security implications of lossless compression

Kelsey et al. pioneered the notion of secret-dependent
compression ratios, and how to exploit them to build
compression-ratio attacks in the context of CPU-side
software-visible lossless compression algorithms [10].
Follow-up works showed how to apply said attacks to extract
secrets from secure message transport protocols like HTTP
and HTTPS [7], [8], [9] and, more recently, databases [41].
Beyond compression ratio, Schwarzl et al. [42] show how
to exploit (de-)compression algorithm secret-dependent ex-
ecution time to launch remote timing attacks on PHP ap-
plications and PostgreSQL. Finally, Tsai et al. [43] and
Vicarte et al. [44] study compression ratio attacks stemming
from proposed (but not known to be implemented) software-
transparent compression schemes applied to processor hard-
ware caches, register files and other pipeline elements.

Relative to the above work, this paper is the first to
study the security implications of, and build compression-
ratio attacks underpinned by, software-transparent lossless
compression in the wild. Software-transparent lossless com-
pression is an insidious new threat that opens new attack
scenarios beyond what is available to an attacker exploiting
software-visible compression. For example, it fundamentally
breaks constant-time programming (which would presum-
ably disable any software-visible compression, should it be
present). It also dramatically complexifies the design of
software defenses; as we have found, different vendors use
different undocumented compression algorithms that vary
even across generations of the same product line.

We are also the first to study the security of lossless
compression in the context of code run on a GPU, and
how that setting broadens the attack scenarios enabled by
compression (e.g., cross-origin pixel stealing attacks).

7.2. Cross-origin pixel stealing attacks

There is a line of work [23], [37], [45] (starting with that
of Paul Stone [23]) that exploits how SVG filters rendered
on the CPU can be used to create pixel-dependent microar-
chitectural side channels and enable pixel stealing. These
are ineffective/inapplicable when SVG filters are rendered
on the GPU (which is the common deployment today).

Two works have since shown how to ‘revive’ cross-
origin pixel stealing in the GPU setting [24], [25]. They
work by exploiting analog effects. Specifically, by exploiting

13. Although, if vendors are willing to provide better documentation, we
would not object.

how attacker-chosen filters can create pixel-dependent GPU
power consumption differences, which impacts CPU or GPU
clock frequency, which in turn impacts metrics such as
rendering time per frame.

Relative to these works, ours is the first to demonstrate
a purely digital channel for pixel stealing on an iGPU. We
show how a microarchitectural optimization—lossless data
compression/decompression—likewise enables pixel steal-
ing. Even after disabling access to the analog domain (e.g.,
through power, frequency, temperature [24], [25]), our at-
tacks still go through. This is relevant for defenders, showing
that our work will require separate (and likely different)
defenses relative to prior art.

8. Conclusion

This paper shows that software-transparent vendor-
bespoke compression exists in the wild, and can be used to
launch novel side-channel attacks. These findings undermine
the existing security posture related to compression-ratio
attacks. For one, they show that software “does not simply”
turn off compression. And in lieu of completely disabling
compression, they call into question whether it will ever be
appropriate to make assumptions about what compression
algorithm will be in use.

More broadly, we note the rich literature on hardware-
based compression for other parts of the system (e.g., the
processor cache) [46]. In fact, there has been preliminary
work analyzing the theoretical security implications of sev-
eral of these proposals [43], [44]. We are unaware of these
being implemented today. That said, our work (combined
with today’s scaling trends) suggests they may well be on
the horizon and deserve early security-centric attention.

Acknowledgment

We thank our anonymous reviewers for their valuable
feedback. This work was funded by NSF grants 1942888,
1954521, 2153388, and 2154183 and gifts from Google,
Mozilla, and Qualcomm.

References

[1] J. Levin, *OS Internals, Volume II: Kernel Mode. Technolo-
geeks.com, 2019.

[2] S. Hollenbeck, “Transport layer security protocol compression meth-
ods,” RFC 3749, May 2004.

[3] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The secure real-time transport protocol (SRTP),” RFC 3711, Mar.
2004.

[4] B. Monsour, W. R. Stevens, R. Pereira, and A. Shacham, “IP payload
compression protocol (IPComp),” RFC 3173, Sep. 2001.

[5] M. D. D. Team, “Data compression,” https://learn.microsoft.com/en
-us/sql/relational-databases/data-compression/data-compression?vie
w=sql-server-ver16, 2022.

[6] A. Pranckevicius, “Texture compression in 2020,” 2020, online: https:
//aras-p.info/blog/2020/12/08/Texture-Compression-in-2020/.

17

https://learn.microsoft.com/en-us/sql/relational-databases/data-compression/data-compression?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/data-compression/data-compression?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/data-compression/data-compression?view=sql-server-ver16
https://aras-p.info/blog/2020/12/08/Texture-Compression-in-2020/
https://aras-p.info/blog/2020/12/08/Texture-Compression-in-2020/

[7] J. Rizzo and T. Duong, “The CRIME attack,” Presented at Ekoparty
2012, Sep. 2012, slides online: https://docs.google.com/presentation
/d/11eBmGiHbYcHR9gL5nDyZChu -lCa2GizeuOfaLU2HOU/edit.

[8] T. Be’ery and A. Shulman, “A perfect CRIME? only TIME will tell,”
Presented at Black Hat Europe 2013, Mar. 2013, whitepaper online:
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect
-crime-beery-wp.pdf.

[9] Y. Gluck, N. Harris, and A. Prado, “BREACH: Reviving the CRIME
attack,” Presented at Black Hat USA 2013, Aug. 2013, whitepaper
online: https://breachattack.com/resources/BREACH%20-%20SSL,
%20gone%20in%2030%20seconds.pdf.

[10] J. Kelsey, “Compression and information leakage of plaintext,” in
FSE, 2002.

[11] “W3c filter effects module level 1,” https://www.w3.org/TR/filter-e
ffects-1/#priv-sec, accessed on 12 02, 2022.

[12] “Canvas composite operations and css blend modes leak cross-origin
data via timing attacks,” https://bugs.chromium.org/p/chromium/iss
ues/detail?id=699028, accessed on 12 02, 2022.

[13] “Svg filter timing attack,” https://bugzilla.mozilla.org/show bug.cgi
?id=711043, accessed on 12 02, 2022.

[14] “Pixelstealing and history-stealing through floating-point timing side
channel,” https://bugzilla.mozilla.org/show bug.cgi?id=1131288,
accessed on 12 02, 2022.

[15] A. Pranckevičius, “Texture compression in 2020,” Online: https://aras
-p.info/blog/2020/12/08/Texture-Compression-in-2020/, Dec. 2020.

[16] C. Brennan, “Getting the most out of Delta Color Compression,”
Online: https://gpuopen.com/learn/dcc-overview/, Mar. 2016.

[17] D. Roberts and K. Hinson, “Discover advances in Metal for A15
Bionic,” Online: https://developer.apple.com/videos/play/tech-talks/1
0876/, Sep. 2021.

[18] “Arm frame buffer compressions (AFBC),” Online: https://www.arm.
com/technologies/graphics-technologies/arm-frame-buffer-compressi
on.

[19] R. Britton, “Reducing memory bandwidth with PVRIC,” Online: ht
tps://blog.imaginationtech.com/reducing-bandwidth-pvric/, Jul. 2018.

[20] B. Widawsky, “Framebuffer modifiers: Supporting end-to-end graph-
ics compression,” Presented at the 2017 Linux Plumbers Conference,
Sep. 2017, slides online: https://blog.linuxplumbersconf.org/2017/oc
w/system/presentations/4694/original/Framebuffer%20modifiers.pdf.

[21] “Whitepaper: NVIDIA GeForce GTX 1080,” Online: https://internat
ional.download.nvidia.com/geforce-com/international/pdfs/GeForce
GTX 1080 Whitepaper FINAL.pdf, 2016.

[22] Qualcomm Adreno Vulkan Developer Guide, Qualcomm Technolo-
gies, Aug. 2017, archived: https://web.archive.org/web/2017120115
0710/https://developer.qualcomm.com/qfile/34706/80-nb295-7 a-adr
eno vulkan developer guide.pdf.

[23] P. Stone, “Pixel perfect timing attacks with HTML5,” Context Infor-
mation Security, White Paper, 2013.

[24] H. Taneja, J. Kim, J. J. Xu, S. van Schaik, D. Genkin, and Y. Yarom,
“Hot pixels: Frequency, power, and temperature attacks on GPUs and
ARM SoCs,” in USENIX Security, 2023.

[25] Y. Wang, R. Paccagnella, A. Wandke, Z. Gang, G. Garrett-Grossman,
C. W. Fletcher, D. Kohlbrenner, and H. Shacham, “DVFS frequently
leaks secrets: Hertzbleed attacks beyond SIKE, cryptography, and
CPU-only data,” in S&P, 2023.

[26] Processor Programming Reference (PPR) for AMD Family 17h Model
60h, Revision A1 Processors, Sep. 2020.

[27] A. Shusterman, Z. Avraham, E. Croitoru, Y. Haskal, L. Kang, D. Levi,
Y. Meltser, P. Mittal, Y. Oren, and Y. Yarom, “Website fingerprinting
through the cache occupancy channel and its real world practicality,”
IEEE Transactions on Dependable and Secure Computing, vol. 18,
no. 5, pp. 2042–60, 2021.

[28] Intel Open Source HD Graphics, Intel Iris Graphics, and Intel Iris
Pro Graphics Programmer’s Reference Manual: Volume 5: Memory
Views, May 2016.

[29] Intel Open Source HD Graphics, Intel Iris Graphics, and Intel Iris
Pro Graphics Programmer’s Reference Manual: Volume 12: Display,
May 2016.

[30] Intel Iris Xe and UHD Graphics Open Source Programmer’s Refer-
ence Manual: Volume 12: Display Engine, Dec. 2021.

[31] A. R. Appu, P. Surti, and H. Akiba, “Method and apparatus for multi
format lossless compression,” Patent US10453169B2, 2019.

[32] Intel Iris Xe and UHD Graphics Open Source Programmer’s Refer-
ence Manual: Volume 5: Memory Data Formats, Dec. 2021.

[33] S. Kothandaraman, K. Vaidyanathan, A. R. Appu, K. Szerszen, and
P. Surti, “Unified memory compression mechanism,” Patent applica-
tion publication US20220084156A1, 2022.

[34] L. Zhang, X. Xiu, J. Chen, M. Karczewicz, Y. He, Y. Ye, J. Xu,
J. Sole, and W.-S. Kim, “Adaptive color-space transform in HEVC
screen content coding,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 6, no. 4, pp. 446–59, 2016.

[35] C. Brennan and T. T. Paltashev, “Method and apparatus for compress-
ing randomly accessed data,” Patent US10062143B2, 2018.

[36] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-origin pixel
stealing: Timing attacks using CSS filters,” in CCS, 2013.

[37] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
S&P, 2015.

[38] T. G. Akenine-Moller, P. Surti, A. Koker, D. Puffer, and J. Nilsson,
“Cache and compression interoperability in a graphics processor
pipeline,” Patent WO2018057109A1, 2018.

[39] B. Har-Even, “Introducing PVRIC4—taking image compression to
the next level,” Online: https://blog.imaginationtech.com/introducing
-pvric4-taking-image-compression-to-the-next-level/, Oct. 2018.

[40] Y. Wang, R. Paccagnella, E. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning Power Side-Channel Attacks
Into Timing Attacks on x86,” in USENIX Security, 2022.

[41] M. Hogan, Y. Michalevsky, and S. Eskandarian, “Dbreach: Stealing
from databases using compression side channels,” in S&P, 2023.

[42] M. Schwarzl, P. Borrello, G. Saileshwar, H. Müller, M. Schwarz,
and D. Gruss, “Practical timing side channel attacks on memory
compression,” in S&P, 2023.

[43] P.-A. Tsai, A. Sanchez, C. W. Fletcher, and D. Sanchez, “Safecracker:
Leaking secrets through compressed caches,” in ASPLOS, 2020.

[44] J. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison, D. Kohlbren-
ner, and C. W. Fletcher, “Opening Pandora’s Box: A Systematic Study
of New Ways Microarchitecture Can Leak Private Data,” in ISCA,
2021.

[45] D. Kohlbrenner and H. Shacham, “On the effectiveness of mitigations
against floating-point timing channels,” in USENIX Security, 2017.

[46] D. R. Carvalho and A. Seznec, “Understanding cache compression,”
ACM Transactions on Architecture and Code Optimization, vol. 18,
no. 3, pp. 36:1–27, 2021.

18

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
https://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
https://www.w3.org/TR/filter-effects-1/#priv-sec
https://www.w3.org/TR/filter-effects-1/#priv-sec
https://bugs.chromium.org/p/chromium/issues/detail?id=699028
https://bugs.chromium.org/p/chromium/issues/detail?id=699028
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=1131288
https://aras-p.info/blog/2020/12/08/Texture-Compression-in-2020/
https://aras-p.info/blog/2020/12/08/Texture-Compression-in-2020/
https://gpuopen.com/learn/dcc-overview/
https://developer.apple.com/videos/play/tech-talks/10876/
https://developer.apple.com/videos/play/tech-talks/10876/
https://www.arm.com/technologies/graphics-technologies/arm-frame-buffer-compression
https://www.arm.com/technologies/graphics-technologies/arm-frame-buffer-compression
https://www.arm.com/technologies/graphics-technologies/arm-frame-buffer-compression
https://blog.imaginationtech.com/reducing-bandwidth-pvric/
https://blog.imaginationtech.com/reducing-bandwidth-pvric/
https://blog.linuxplumbersconf.org/2017/ocw/system/presentations/4694/original/Framebuffer%20modifiers.pdf
https://blog.linuxplumbersconf.org/2017/ocw/system/presentations/4694/original/Framebuffer%20modifiers.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://web.archive.org/web/20171201150710/https://developer.qualcomm.com/qfile/34706/80-nb295-7_a-adreno_vulkan_developer_guide.pdf
https://web.archive.org/web/20171201150710/https://developer.qualcomm.com/qfile/34706/80-nb295-7_a-adreno_vulkan_developer_guide.pdf
https://web.archive.org/web/20171201150710/https://developer.qualcomm.com/qfile/34706/80-nb295-7_a-adreno_vulkan_developer_guide.pdf
https://blog.imaginationtech.com/introducing-pvric4-taking-image-compression-to-the-next-level/
https://blog.imaginationtech.com/introducing-pvric4-taking-image-compression-to-the-next-level/

Appendix
Mesa and i915 trace of texture creation

In Figure 18, we show the complete Mesa and i915
(Linux kernel driver for Intel integrated graphics) trace of
texture creation in our minimal OpenGL program from
Section 4.1.

1 glTexImage2D creates the texture with an in-
put pixel array that specifies each pixel’s RGBA value.
2 - 5 A series of Mesa functions are invoked to cre-
ate an iris_resource object with a tile-Y formatted
main surface and an auxiliary CCS surface. Upon creation,
the main surface is configured with parameters includ-
ing height, width, and size. The auxiliary CCS is con-
figured with parameters including size and relative offset
from the main surface starting address. 6 - 7 Mesa
issues an ioctl call to i915, which requests the kernel
to create a buffer object drm_i915_gem_object that
manages this iris_resource. i915 creates the buffer
object and returns a gem_handle to Mesa for Mesa
to reference the same buffer object in the future. 8
Mesa then issues another ioctl call with the returned
gem_handle as an argument, which requests the ker-
nel to allocate physical pages for the buffer object. 9 -
11 Finally, after drm_i915_gem_object has physical
pages backing it up, Mesa issues a mmap ioctl call with
the same gem_handle as an argument. i915 returns an
mmap offset to Mesa, which then obtains a Mesa address
space mapping of drm_i915_gem_object at address
iris_bo_mesa_addr. Later, when the iGPU finishes
writing to drm_i915_gem_object (described below),
we can find the compressed tile-Y formatted main surface
at the address iris_bo_mesa_addr, and the associated
CCS at the address iris_bo_mesa_addr plus the rela-
tive offset.

Appendix
Mesa and i915 trace of batch creation

Above we illustrate the process of texture creation in
our minimal OpenGL program from Section 4.1. We show
how to find the compressed tile-Y formatted surface and its
auxiliary CCS. A natural question to ask is: How does Mesa
interact with the iGPU to create the compressed surface?

In Figure 19, we show the complete Mesa and i915
trace of batch creation, where a batch is a job that Mesa
submits to the iGPU. 1 Above we mention that the
function glTexImage2D creates an iris_resource
object with a tile-Y formatted main surface and an auxiliary
CCS. On top of that, glTexImage2D also creates another
linearly formatted main surface with no CCS. The creation
of this linear surface follows a similar process as that of
the tiled one. We use linear_iris_bo to denote the
Mesa address space mapping of the linear surface and
y0_iris_bo to denote that of the tile-Y surface. Upon
creation, y0_iris_bo is all 0s, and linear_iris_bo
contains linearly formatted RGBA pixel values. 2 - 4

Mesa

1. glTexImage2D

Linux i915

7.i915_gem_create_ioctl

__i915_gem_object_create_user

struct drm_i915_gem_object:
 size = iris_bo.size

8.i915_gem_set_domain_ioctl

i915_gem_object_pin_pages

Physical page allocation

10.i915_gem_mmap_offset_ioctl

User-space mapping

__assign_mmap_offset

2.st_texture_create

3.iris_resource_create
_with_modifiers

5.iris_resource
_configure_aux

isl_tiling_get_info
(tiling=ISL_TILING_Y0)

isl_tiling_get_info
(tiling=ISL_TILING_CCS)

4.iris_resource
_configure_main

 struct iris_resource:
 Main surface layout:
 Tiling = ISL_TILING_Y0
 Width = 1500, Height = 1000
 Size = 6160384
 Offset = 0
 Auxiliary surface layout:
 Tiling = ISL_TILING_CCS
 Size = 16384
 Offset = 6160384
 Usage = ISL_AUX_USAGE_CCS_E

 ioctl(iris_bo.size)

struct iris_bo:
 size = main.size + aux.size
 handle = gem_handle

Configure Configure

Create iris_resource

6.iris_bo_alloc

Create
iris_bo

 ioctl(gem_handle,...)

struct drm_i915_gem_object:
 page.size = 439

9.iris_bo_map

Create drm_i915_gem_object

 gem_handle

ioctl(gem_handle,...)

 mmap_offset

11.mmap(mmap_offset)

Create user-space
mapping for iris_bo

iris_bo_mesa_addr

Figure 18. Complete Mesa and i915 trace of tile-Y formatted tex-
ture creation in our minimal OpenGL program from Section 4.1. Upon
texture creation (glTexImage2D), Mesa configures a data structure
iris_resource that records the necessary information of a tile-Y for-
matted main surface and its CCS auxiliary surface. Mesa issues ioctl calls
to i915 to create and allocate a buffer object drm_i915_gem_object
that represents the texture in the kernel space. Then, Mesa requests a
userspace mapping of the drm_i915_gem_object and maps it at
address iris_bo_mesa_addr. Once the iGPU completes writing to
drm_i915_gem_object, iris_bo_mesa_addr contains the com-
pressed tile-Y formatted main surface, and iris_bo_mesa_addr plus
an offset contains the auxiliary CCS.

To submit a rendering task to the iGPU, Mesa creates
an iris_batch object that collects all necessary infor-
mation from commands, and vertex buffers, to surfaces.
The batch adds linear_iris_bo as the source with the

19

Mesa

1. glTexImage2D

Linux i915

dst: y0_iris_bo
(write = true)

6.i915_gem_execbuffer2_ioctl

 Validation
 Reservation
 Relocation
 Serialisation
 Construction
 Submission

7.Intel_ring_begin

2.create_batch

add_bo_to_batch
(command buffer,
shader kernels,
surface state,

...)

struct iris_batch

3.blorp_setup_binding_table

src: linear_iris_bo
(write = false)

add_bo_tobatch

add_bo_tobatch

4.iris_finish_batch

5.submit_batch

struct drm_i915_gem_execbuffer2:
 list_iris_bo:
 ...
 linear_iris_bo
 y0_iris_bo
 (flag: EXEC_OBJECT_WRITE)
 ...

 ioctl

Figure 19. Complete Mesa and i915 trace of batch creation in our minimal
OpenGL program from Section 4.1. glTexImage2D creates a linearly for-
matted main surface (with no CCS) mapped at address linear_iris_bo
and a tile-Y formatted main surface (with CCS) mapped at address
y0_iris_bo. Initially, y0_iris_bo is all 0s, and linear_iris_bo
contains linearly formatted RGBA pixel values. For the iGPU to execute a
rendering task, Mesa prepares an iris_batch with linear_iris_bo
as the source and y0_iris_bo as the destination. Mesa submits the batch
to i915, which validates and submits it to the iGPU. In the end, the iGPU
fills y0_iris_bo with the compressed tile-Y formatted surface using
linear_iris_bo as the source.

write attribute set to false, and adds y0_iris_bo as the
destination with the write attribute set to true. 5 Mesa then
submits this iris_batch to i915 via an ioctl call. 6 - 7
i915 verifies the validity of all pointers in the batch and then
submits the job to the iGPU. The iGPU asynchronously fills
y0_iris_bo with the compressed tile-Y formatted surface
using linear_iris_bo as the source.

20

	Introduction
	Background
	GPUs, surfaces, and compression
	A note about OpenGL and coordinate systems

	Browsers, the SOP, and pixel stealing

	iGPU Graphical Data Compression Exists
	Experimental setup
	Graphical workload
	Evidence for iGPU graphical data compression
	The Intel i7-8700 iGPU: A case study

	Reverse-Engineering Intel and AMD iGPU Graphical Data Compression
	A minimal OpenGL example
	Intel iGPU tracing
	Intel GPU compression, reverse-engineered
	AMD iGPU tracing
	AMD GPU compression, reverse-engineered

	Side-Channel Attacks Exploiting Graphical Data Compression
	Experimental setup
	Measuring iGPU compression from Chrome
	Proof-of-Concept pixel stealing attack
	Wikipedia username stealing example

	Discussion
	Related Work
	Security implications of lossless compression
	Cross-origin pixel stealing attacks

	Conclusion
	References
	Appendix: Mesa and i915 trace of texture creation
	Appendix: Mesa and i915 trace of batch creation

