
DVFS Frequently Leaks Secrets: Hertzbleed Attacks
Beyond SIKE, Cryptography, and CPU-Only Data

Yingchen Wang∗, Riccardo Paccagnella†, Alan Wandke†, Zhao Gang∗, Grant Garrett-Grossman†,
Christopher W. Fletcher†, David Kohlbrenner‡, Hovav Shacham∗

∗University of Texas at Austin, †University of Illinois Urbana-Champaign, ‡University of Washington

Abstract—The recent Hertzbleed disclosure demonstrates how
remote-timing analysis can reveal secret information previously
only accessible to local-power analysis. At worst, this consti-
tutes a fundamental break in the constant-time programming
principles and the many deployed programs that rely on them.
But all hope is not lost. Hertzbleed relies on a coarse-grained,
noisy channel that is difficult to exploit. Indeed, the Hertzbleed
paper required a bespoke cryptanalysis to attack a specific
cryptosystem (SIKE). Thus, it remains unclear if Hertzbleed
represents a threat to the broader security ecosystem.

In this paper, we demonstrate that Hertzbleed’s effects are
wide ranging, not only affecting cryptosystems beyond SIKE,
but also programs beyond cryptography, and even computa-
tions occurring outside the CPU cores. First, we demonstrate
how latent gadgets in other cryptosystem implementations—
specifically “constant-time” ECDSA and Classic McEliece—
can be combined with existing cryptanalysis to bootstrap
Hertzbleed attacks on those cryptosystems. Second, we demon-
strate how power consumption on the integrated GPU influ-
ences frequency on the CPU—and how this can be used to
perform the first cross-origin pixel stealing attacks leveraging
“constant-time” SVG filters on Google Chrome.

1. Introduction

Hertzbleed is a recently-discovered class of timing at-
tacks that can leak secrets even from correctly implemented
constant-time code [1]. Unlike traditional timing attacks,
which are only able to leak “digital features” (e.g., instruc-
tion count) related to a program’s execution, Hertzbleed can
turn power side channels into timing attacks. As a result,
Hertzbleed can leak “analog features” (e.g., features of
instruction operands) that could not be previously leaked via
timing attacks. This finding, made possible by the ubiquitous
dynamic voltage and frequency scaling feature of modern
hardware, has challenged decades of research on mitigating
both power side-channel attacks and timing attacks.

Fortunately, despite its significance, Hertzbleed has only
been demonstrated on one specific cryptographic primitive,
SIKE. That attack crucially took advantage of SIKE’s inner
workings to construct ciphertexts that trigger a sustained
low-power state in the CPU depending on a secret bit.
With SIKE now deprecated due to unrelated security con-
cerns [2]–[4], Hertzbleed’s security implications are unclear.

In this paper, we initiate the study of Hertzbleed
after SIKE. Through three case studies, we show that
Hertzbleed’s effects extend beyond SIKE to other cryptosys-
tems; beyond cryptography to other software that handles
secret data; and beyond the CPU cores to data processed
elsewhere on a system-on-chip (SoC).

Our first two case studies concern cryptography. In both,
we show that Hertzbleed gives a new way to reveal compro-
mising information also targeted in previous side-channel
attacks: for ECDSA, the number of leading 0 bits in the
nonce (cf. [5]–[11]); for Classic McEliece, whether the num-
ber of errors exceeds the correction bound (cf. [12]–[14]).
The implementations we study (BearSSL for ECDSA, the
optimized reference implementation for Classic McEliece)
are hardened against timing side channels, yet we identify
novel ways in which they are vulnerable to Hertzbleed.

Our attack against BearSSL’s ECDSA implementation is
on the edge of practicality, and notable mostly for breaking
an extremely carefully written implementation of a stan-
dardized and well-studied cryptosystem. By contrast, our
second attack, against Classic McEliece, is practical, and
we demonstrate full plaintext recovery via 17.5 days of
interaction with the server across a LAN.

One limitation of both case studies is that ECDSA
signing and Classic McEliece decapsulation are too fast to
saturate the CPU (to reach thermal limits) with a request-
per-TCP-connection server. For the sake of demonstration,
we sidestep this limitation with a server that multiplexes
multiple requests in a single TCP connection; we discuss
this design decision further below.

In our third case study, we show that Hertzbleed can be
used to violate the same-origin policy in the latest version of
Google Chrome due to data-dependent power consumption
in the integrated GPU (iGPU) when applying SVG filters to
graphical data. This attack is completely practical, recover-
ing pixel values cross origin at between 1 and 3 pixels per
second across half a dozen Intel and AMD machines we
tested. Along the way we demonstrate, for the first time,
that iGPUs exhibit data-dependent power consumption, and
that variable power draw in one SoC component (the iGPU)
can cause frequency throttling in another (the CPU cores).
Notably, ours is the first demonstrated pixel stealing attack
in which the SVG filter rendering code runs in the iGPU
and where the filter’s running time is the same regardless of
leaked pixel color.

1



Our core contributions are:
• We demonstrate that there exist cryptographic imple-

mentations beyond SIKE vulnerable to Hertzbleed.
• We demonstrate that Hertzbleed can be induced by

computations occurring outside the CPU cores.
• We demonstrate how to leverage this cross-component

Hertzbleed effect to perform cross-origin pixel stealing
in Google Chrome, entirely from JavaScript.

Disclosure. We disclosed our findings to Intel, AMD,
Google, BearSSL and the Classic McEliece team. BearSSL
acknowledged our findings. The Classic McEliece team did
not respond. As of April 2023, the Chrome developers were
still deciding whether and how to patch.

2. Background: Hertzbleed

Modern processors dynamically adjust their CPU fre-
quency to reduce power consumption (during low CPU load)
or to ensure that thermal parameters remain below safe
limits (during high CPU load). This feature is commonly
known as dynamic voltage and frequency scaling (DVFS).
Hertzbleed attacks leverage the discovery that, during high
CPU loads, DVFS-induced frequency adjustments depend
on the data being computed on. This is because these adjust-
ments depend on the CPU power consumption, which is data
dependent. Moreover, data-dependent frequency changes di-
rectly translate to execution time differences (as 1 hertz = 1
cycle/second), which are remotely observable. Specifically,
Wang et al. demonstrated that computing on data with high
Hamming Weight (HW) or Hamming Distance (HD) causes
the CPU to run at a lower frequency than computing on
data with low HW or HD [1]. They exploited this obser-
vation to perform a remote key extraction on constant-time
implementations of SIKE, a post-quantum key encapsulation
mechanism. They concluded that “current cryptographic en-
gineering practices for how to write constant-time code are
no longer sufficient to guarantee constant time execution
of software”. Despite its significance, however, this claim
has only been shown to hold against SIKE. Moreover,
Hertzbleed was only ever applied to leak secrets in the CPU.

3. Beyond SIKE: The Possibility of Triggering
Hertzbleed in Other Cryptosystems

We now demonstrate, for the first time, that the implica-
tions of Hertzbleed to constant-time cryptography extend
beyond SIKE. To this end, we show that the constant-
time implementations of two other prominent cryptosystems
are also affected by Hertzbleed. The first is the Elliptic
Curve Digital Signature Algorithm (ECDSA), a widely-
used classical public key cryptosystem. The second is Clas-
sic McEliece, an emerging post-quantum cryptosystem that
recently advanced to the Fourth Round of NIST’s Post-
Quantum Cryptography (PQC) competition. Without taking
Hertzbleed into account on modern CPUs, cryptographic im-
plementations following current constant-time programming
principles can fail to achieve true constant-time execution.

Table 1: CPUs used in Section 3’s experimental setup.

CPU Model Cores Base
Frequency

Max
Frequency

AMD Ryzen 7 4800U (Zen 2) 8 1.80 GHz 4.20 GHz
Intel Core i7-8700 (Coffee Lake) 6 3.20 GHz 4.60 GHz
Intel Core i7-12700K (Alder Lake) 12 3.60 GHz 4.80 GHz

3.1. Experimental Setup

We run our experiments on three machines, one with
an AMD processor and two with an Intel processor, whose
details are shown in Table 1. All machines run Ubuntu 22.04
with Linux 5.15 and the latest microcode patches installed.
To monitor CPU frequency and package domain power
consumption, we use the same approach as Wang et al. [1].
For the CPU frequency, we use the MSR_IA32_MPERF and
MSR_IA32_APERF registers. For the power consumption,
we use the running average power limit (RAPL) inter-
face [15, §15.10]. When monitoring CPU frequency, we use
the default system configuration. Our i7-12700K implements
Intel’s recently introduced data operand independent timing
(DOIT) mechanism [16]. On this machine, we run CPU
frequency experiments twice, once with DOIT disabled and
again with DOIT enabled. When monitoring CPU power
consumption (package domain), we disable frequency boost
so that the CPU runs at the base frequency. When reporting
average CPU frequency, power, or execution time, we first
filter out the outliers and then compute the average.

Some of our experiments rely on separate client and
server processes. The primitives we study in this section are
too fast for a simple TCP-connection-per-request server to
saturate our CPUs, unlike SIKE’s decapsulation. We consid-
ered carefully tuning the network stack a la Shenango [17],
but settled instead on a simple connection-multiplexing
server. The client establishes multiple TCP connection to
the server, opens multiple logical streams within each con-
nection (using the Go Yamux library), and sends multiple
requests sequentially within each stream. We do not claim
that any deployed server uses this configuration, but we do
expect that other server configurations in which the client
can saturate the CPU would show similar results.

The target server and the attacker are both connected to
the same network, and we measure an average round-trip
time of between the two machines.

3.2. Case Study on ECDSA

ECDSA is a popular signature scheme with an unfor-
tunate vulnerability: A leak of the nonce—the ephemeral
randomness—used in generating a signature reveals the
long-term signing key. To compensate for this vulnerability,
implementations of the ECDSA signing operation must be
carefully written to avoid leaking information about the
nonce over a side channel. In this section, we show that
the implementation of ECDSA signing in an especially
conservative cryptographic library, BearSSL, leaks infor-
mation about the nonce through Hertzbleed. Ironically, the

2



programming tricks used to make the signing code constant-
time are the source of the power difference that makes the
Hertzbleed attack possible.

Background. ECDSA is an elliptic curve signature scheme,
and inherits the following global parameters from the curve
over which it is defined:
• E(Fq): An elliptic curve E over a finite field Fq.
• n: A large prime that divides the order of E(Fq).
• G: An element of E(Fq) that has order n.
An ECDSA keypair consists of a secret signing key d ∈

Z/nZ and a public verification key Q = [d]G.
Given a nonce k and a message to sign whose hash

is h (both quantities in Z/nZ), the signing algorithm first
computes U ← [k]G. It then sets r ← (U)x mod n, where
the notation (·)x means the x coordinate of the argument.
Finally, it computes s← k−1(h+ dr) mod n. The ECDSA
signature is (r, s).

Extracting the secret key with a known nonce. Crucially,
knowledge of the nonce k used to generate a signature (r, s)
would allow an attacker to reconstruct the signing key d as
(sk−h)/r mod n. This means that even a temporary failure
of a system’s random number generator could compromise
its long-term secret.1

One approach for hardening ECDSA against randomness
failures is to derandomize it: To generate the nonce by
applying a cryptographic pseudorandom function (PRF) to
the message. RFC 6979 specifies a concrete instantiation of
this hardening measure, with HMAC as the PRF [19].

A consequence of derandomizing ECDSA that is impor-
tant for our attack is that the signer will use the same nonce
every time it signs a given message.

Extracting the secret key with known nonce bits. The
leak of even partial information about nonces can undermine
ECDSA security. A line of beautiful cryptanalytic results
shows how an attacker who obtains a handful of signatures
whose nonces all have their most significant few bits equal
to 0 can recover the secret key. For 256-bit curves, just
64 signatures with nonces whose top 4 bits are 0, or just
32 signatures with nonces whose top 8 bits are 0, suffice
for recovering the signing key [5]. (Other leakage patterns
are also dangerous; see Heninger [20].)

A naive implementation of scalar multiplication leaks the
length of the scalar multiplier (i.e., the number of leading
0 bits) via a timing side channel. That leak makes such an
implementation unsuitable for computing [k]G as part of
ECDSA signing. ECDSA implementations use a variety of
mitigations to close this potential side channel, for example
padding k by adding multiples of n until it is a fixed length;
see Weiser et al. [21] for a survey.

Scalar multiplication in BearSSL’s ECDSA implemen-
tation. Below, we examine the implementation of ECDSA

1. Indeed, the PlayStation 3’s signing key was recovered because its
ECDSA implementation used predictable nonces [18].

in BearSSL’s latest development version.2 For concreteness,
we describe BearSSL’s “m64” implementation (the default
on 64-bit platforms) of arithmetic on the NIST P-256 curve.

On this curve, BearSSL implements scalar multiplica-
tion using a fixed 4-bit window left-to-right double-and-
add algorithm, shown in Listing 1, which is extracted
(and rewrapped) from ec_p256_m64.c. The function
point_mul_inner can be used to compute [k]P for any
scalar k and any point P in constant time. Its argument W
holds the 4-bit window lookup table [1]P, [2]P, . . . [15]P ;
when P is the public curve generator G, as is the case for
ECDSA signing, this table is precomputed.

The loop maintains an accumulator point Q. An iteration
of the main loop (listing lines 15–64) computes Q← [16]Q+
[bits]P , where bits is a four-bit nibble extracted from
the scalar k (line 28).

The code uses a series of clever tricks to implement this
in constant time while accounting for edge cases.

First, in a naive implementation, we would start the loop
at the most significant nonzero nibble of k and, in that
iteration, set Q ← [bits]P . This would, of course, not be
constant time. Instead, point_mul_inner tracks whether
Q is uninitialized using the flag qz. So long as the flag
qz is set, Q holds the all-0 bitpattern. (The projective point
doubling function, p256_double, is written in such a way
that doubling an all-0 input produces an all-0 output.)

Second, to extract [bits]P from the array W without
using a secret value as an array index, the function iterates
through every entry of W, using bitwise masks to extract
only the entry W[n] for which n+1 = bits (lines 36–47).
When bits = 0, the mask condition is never satisfied, and
T is never updated from the all-0 bitpattern with which it was
initialized. The all-0 bitpattern is not the bit representation
of any affine point on the curve, so in the case bits = 0
the p256_add_mixed operation that takes T as an input
(line 50) does not produce meaningful output.

Third, masking logic using the qz and bnz flags ensures
that, at the bottom of the loop, the accumulator Q is set to
the right value:

1) If Q holds a meaningful value (qz is unset) and T holds
a meaningful value (bnz is set), then the conditional
copy at line 61 will overwrite Q with U, which holds
the sum of Q and T.

2) If Q holds a meaningful value (qz is unset) but T does
not (bnz is unset), then the conditional copy will not
overwrite Q, leaving it at 16 times its value in the
previous loop iteration due to the four p256_double
invocations (lines 24–27).

3) If Q does not yet hold a meaningful value (qz is set)
but T does (bnz is set), then the mask m is set to all-1
(line 55), causing Q’s x and y coordinates to be copied
from T (lines 57–58) and its z coordinate to be set to
(the Montgomery representation of) 1 (line 59). In this
case the flag qz is cleared (line 62).

2. Commit 46f7dddce75227f2e40ab94d66ceb9f19ee6b1b0,
8 June 2022.

3



1 static void point_mul_inner(p256_jacobian *R,
2 const p256_affine *W,
3 const unsigned char *k, size_t klen)
4 {
5 p256_jacobian Q;
6 uint32_t qz;
7

8 memset(&Q, 0, sizeof Q);
9 qz = 1;

10 while (klen -- > 0) {
11 int i;
12 unsigned bk;
13

14 bk = *k ++;
15 for (i = 0; i < 2; i ++) {
16 uint32_t bits;
17 uint32_t bnz;
18 p256_affine T;
19 p256_jacobian U;
20 uint32_t n;
21 int j;
22 uint64_t m;
23

24 p256_double(&Q);
25 p256_double(&Q);
26 p256_double(&Q);
27 p256_double(&Q);
28 bits = (bk >> 4) & 0x0F;
29 bnz = NEQ(bits, 0);
30

31 /* Lookup point in window. If the bits
32 * are 0, we get something invalid,
33 * which is not a problem because we
34 * will use it only if the bits are
35 * non-zero. */
36 memset(&T, 0, sizeof T);
37 for (n = 0; n < 15; n ++) {
38 m = -(uint64_t)EQ(bits, n + 1);
39 T.x[0] |= m & W[n].x[0];
40 T.x[1] |= m & W[n].x[1];
41 T.x[2] |= m & W[n].x[2];
42 T.x[3] |= m & W[n].x[3];
43 T.y[0] |= m & W[n].y[0];
44 T.y[1] |= m & W[n].y[1];
45 T.y[2] |= m & W[n].y[2];
46 T.y[3] |= m & W[n].y[3];
47 }
48

49 U = Q;
50 p256_add_mixed(&U, &T);
51

52 /* If qz is still 1, then Q was
53 * all-zeros, and this is conserved
54 * through p256_double(). */
55 m = -(uint64_t)(bnz & qz);
56 for (j = 0; j < 4; j ++) {
57 Q.x[j] |= m & T.x[j];
58 Q.y[j] |= m & T.y[j];
59 Q.z[j] |= m & F256_R[j];
60 }
61 CCOPY(bnz & ˜qz, &Q, &U, sizeof Q);
62 qz &= ˜bnz;
63 bk <<= 4;
64 }
65 }
66 *R = Q;
67 }

Listing 1: BearSSL P-256 scalar multiplication implemen-
tation, m64 variant.

4) Finally, if Q does not yet hold a meaningful value (qz
is set) and T also does not (bnz is unset), none of the
masking operations changes the value of Q.

In ECDSA signing, the point_mul_inner function
is always called with a 32-byte (256-bit) k; the above tricks
ensure that its running time is the same regardless of how
many leading all-0 nibbles k has, under a traditional Kocher-
style analysis that rules out secret-dependent branching,
indexing, and variable-time instructions [22].

BearSSL ECDSA under power analysis. However, the
power usage of the point_mul_inner function varies
depending on how many leading all-0 nibbles k has.

The variable Q is initialized to the all-0 bitpattern, and
holds that value until a non-zero nibble is encountered. The
point T extracted from the window also holds the all-0
bitpattern in every loop iteration where bits = 0.

As a result, each additional leading all-0 nibble in k
induces four additional p256_double calls whose input
is all-0, an extra p256_add_mixed call both of whose
inputs are all-0, and some additional bitwise operations
with all-0 inputs in the point_mul_inner loop. Every
intermediate value produced in these subroutine calls is also
all-0. The result is that leading all-0 nibbles trigger ALU
dataflows with low HW/HD: The more leading all-0 nibbles
k has, the lower the power consumption.

Because scalar multiplication is by far the most com-
putationally intensive step in ECDSA signing, a significant
power difference in scalar multiplication induces a signifi-
cant power difference for the signing operation as a whole.

BearSSL ECDSA under Hertzbleed. Crucially, BearSSL’s
ECDSA signing is derandomized using RFC 6979. As a
result, every time a given message is signed, the same
nonce is chosen. If we repeatedly request signatures from a
multithreaded signing server for a message that happens to
be associated with a nonce with many top all-0 nibbles,
all the signing operations will have low power draw. If
we repeatedly request signatures for a message associated
with a nonce whose top nibble is nonzero, all the signing
operations will have high power draw.

As we show below, this accumulated power difference
is significant enough to induce timing variability under
Hertzbleed. As a result, BearSSL’s ECDSA signing routine
is not constant time in practice despite following the Kocher
principles for constant-time programming.

Experimental validation. We use the setup of Section 3.1
to locally monitor CPU frequency and power consumption
when BearSSL ECDSA generates signatures with nonces
containing 1 to 20 leading 0s. We sample power/frequency
every and collect 1,000,000 data points per experiment.

Our Proof-of-Concept (PoC) has a randomly generated
secret key d. For each count i of leading 0 bits, we create
3 random messages {mi,0,mi,1,mi,2} whose RFC 6979
nonces have exactly i leading 0 bits.

We launch a multithreaded BearSSL signing server. The
server spawns pthreads on all CPU cores. Each thread

4



0 5 10 15 20
Number of leading 0s in nonce

41.98

42.00

42.02

Po
we

r (
W

at
ts

)

(a) CPU power consumption vs
number of leading 0s in k

0 5 10 15 20
Number of leading 0s in nonce

3.8520

3.8525

3.8530

3.8535

3.8540

Fr
eq

ue
nc

y 
(G

Hz
)

(b) CPU frequency vs number
of leading 0s in k

Figure 1: Average CPU power consumption and frequency
on our i7-8700 CPU while BearSSL ECDSA signs messages
that generate nonces k with different numbers of leading 0s.

handles the signing request with mi,j , s as input and runs in
an infinite loop for the duration of the experiment. Figure 1
shows the results on our i7-8700 CPU, grouped according
to the number of leading 0s in k.

First, our results demonstrate that the CPU power con-
sumption during BearSSL ECDSA’s signature generation
depends on the number of leading 0s in k. In Figure 1a,
we confirm that the CPU power consumption decreases as
the number of leading 0s in k increases.

Second, our results demonstrate that the above power
leakage translates to a frequency leakage under Hertzbleed.
In Figure 1b, we confirm the CPU frequency increases as the
number of leading 0s in k increases. We observe consistent
results across all our tested processors and regardless of
DOIT mode status.

Next, we show that the frequency signal is also visible
remotely as a timing difference. We set up server and
client following Section 3.1 with the i7-8700 as our server.
Our server is embedded with a long-term signing secret
key. The server reads in the message, performs the signing
computation, and sends the signature back to the client.

The client targets 1, . . . , 20 leading 0s of k using the
messages generated above. For each message mi,j , the client
spawns 12 TCP concurrent connections. Each TCP connec-
tion starts 200 logical streams, and each logical stream sends
out 100 signing requests in a loop. The client times how long
it takes the server to finish 12×100×200 = 120,000 signing
requests and collects 500 samples. The client interleaves all
mi,j to even out unusual behavior on the server.

Figure 2 shows the results grouped according to the
number of leading 0s. These results demonstrate that non-
constant-time signal is remotely observable. The signing
time decreases when the number of leading 0 bits in k
increases because the server CPU frequency increases.

Discussion. While the timing differences shown above are
clear, they are small in absolute terms and compared to
measurement noise. As a result, we do not claim that remote
key extraction is practical, even with a server that can be
induced to perform ECDSA signing on all hardware threads.
Our implementation would take over 200 days to collect
enough messages with 8 leading 0 bits to recover the key.

5 10 15 20
Number of leading 0s in nonce

4.0250

4.0255

4.0260

4.0265

Ti
m

e 
(s

)

Figure 2: Remote timing vs number of leading 0s in the
nonce k using BearSSL ECDSA on our i7-8700 CPU.

3.3. Case Study on Classic McEliece

Classic McEliece is a round-4 submission to NIST’s
Post-Quantum Cryptography Standardization Project that is
related, but not identical, to the (1978) McEliece cryptosys-
tem [23]. It builds a key encapsulation mechanism (KEM)
from the Niederreiter cryptosystem, which is a dual version
of the original McEliece cryptosystem and is specified to be
implemented using binary Goppa codes [24].

The original McEliece system is vulnerable to an adap-
tive chosen-ciphertext attack (CCA) called Sloppy Al-
ice [12], which relies on a decoding failure oracle to recover
the plaintext. Classic McEliece claims to be not vulnerable
to this attack due to the implicit rejection in the KEM that
checks plaintext re-encryption against the ciphertext [24].

We show the specific implementation choice of the Clas-
sic McEliece’s NIST submission contains a decoding failure
oracle under power analysis, which can be turned into timing
analysis under Hertzbleed. As a result, there exists timing
leakage in Classic McEliece even though its implementation
follows the current constant-time programming principles.

Background. The computational objects on which Classic
McEliece is built are error-correcting codes. (By contrast,
ECDSA is built on elliptic curves.)

Specifically, Classic McEliece uses binary Goppa codes.
A binary Goppa code is an (n, k) linear code C over a finite
field F2m and is a k-dimensional (k = n−mt) subspace of
the vector space Fn

2m ; here t is a crucial parameter described
next. For any pair of codewords (x,y) in C, the distance
between them, dist(x,y), is the Hamming distance. The
weight of x ∈ Fn

2m , wt(x), is its Hamming weight.3
A binary Goppa code C as above has error-correction

capacity t, which means that a receiver can recover a
codeword that has been corrupted in up to t positions, but
not in t + 1 or more. More precisely, given a codeword c
and an arbitrary vector e, if wt(e) ≤ t, there is an efficient
decoding algorithm A that always recovers c from c ⊕ e,
but if wt(e) > t, it fails to recover c [25].

A binary Goppa code C has an (n−k)×n parity check
matrix H such that HcT = 0 for any c in C. For an arbitrary
vector c′ ∈ Fn

2 , the syndrome of c′ is Hc′T ∈ Fn−k
2 .

A Classic McEliece private key comprises a binary
Goppa code C and a random string s used when the re-

3. Details about binary Goppa codes can be found in Appendix A.

5



Algorithm 1: Classic McEliece adaptive CCA
given a decoding failure oracle.

Input: C, H , Decoding failure Oracle
Output: Plaintext e

1 e = {}
2 for i← 0 to n do
3 C ′ ← C ⊕H[i]
4 if Oracle(C ′) 6= Failure then
5 e← e ∪ {i}

6 return e

encryption check fails. After reducing the parity-check ma-
trix H of C to the systematic form [In−k|T ], the public
key is T , a matrix of size (n − k) × k. (Here In−k is the
(n− k)× (n− k) identity matrix.)

Encapsulation picks a random vector e ∈ Fn
2 with

wt(e) = t. Then it recovers H as [In−k|T ] from the public
key T and generates the ciphertext C = He ∈ Fn−k

2 ; the
session key K is the hash of e as described below.

Decapsulation takes in the secret key and a ciphertext C
and outputs the session key K as follows:

1) Extend C to v = (C, 0, . . . , 0) ∈ Fn
2 by appending k

zeros.
2) If v is within the error-correction capacity of the de-

coding algorithm A, A recovers e′ as v⊕c where c is
a unique codeword such that dist(c,v) ≤ t.4 Otherwise
A recovers e′ as failure ⊥.

3) Check wt(e′) = t and that re-encrypting e′ outputs C.
4) If the checks fail, compute K = Hash(0, s, C). Other-

wise, compute K = Hash(1, e′, C).
For the attacks we describe, it is important to remember

that ciphertexts generated by the encapsulation algorithm
have error vector e with weight exactly t and the decoding
subroutine A invoked in step 2 of the decapsulation has a
sharp transition in behavior: It will recover a codeword (and
error vector) with at most t errors but will fail to recover
any codeword with t + 1 or more errors. For more details
on Classic McEliece, we refer to its NIST submission [24].

An Adaptive CCA on Classic McEliece with a decoding
failure oracle. Classic McEliece is vulnerable to an adaptive
CCA if given a decoding failure oracle [13]. With such an
oracle, an adversary who knows a ciphertext can recover the
plaintext. The underlying idea originates from the Sloppy
Alice attack on the original McEliece cryptosystem [12].

Suppose the adversary knows a ciphertext C = He and
wishes to recover the corresponding weight-t error vector e
and thus the plaintext. If the adversary can manipulate C to
C ′ by adding or removing an error, they can induce the sharp
transition of behavior in the decoding subroutine described
above. If C ′ has t− 1 errors, the decoding subroutine will
output e′ with wt(e′) = t − 1. By contrast, if C ′ has t +
1 errors the decoding subroutine will fail (and output ⊥)
because t+ 1 exceeds the error-correction capacity of A.

4. Since v = c⊕ e′, e′ = v ⊕ c.

1 // If decode succeeds, roots of locator are
2 // positions of 1s in plaintext e'; otherwise,
3 // locator is a random polynomial.
4 bm(locator, s_priv);
5 fft(eval, locator);
6

7 // re-encryption and weight check
8 // If decoding succeeds, error256 contains
9 // wt(e') nonzero entries; otherwise,

10 // error256 contains very few nonzero entries.
11 allone = vec256_set1_16b(0xFFFF);
12 for (i = 0; i < 16; i++)
13 {
14 error256[i] = vec256_or_reduce(eval[i]);
15 error256[i] = vec256_xor(error256[i],

allone);↪→

16 }
17 // Expand error256 to scaled for bitslicing,
18 // which amplifies the difference in the
19 // number of non-zero entries.
20 scaling_inv(scaled, inv, error256);
21 // Input scaled to transposed FFT to compute
22 // H*error256, which further amplifies the
23 // difference in HW/HD.
24 fft_tr(s_priv_cmp, scaled);
25

26 // Check the validity of re-encryption, but it
27 // is too late, because the Hertzbleed signal
28 // is already generated.
29 check_synd = synd_cmp(s_priv, s_priv_cmp);

Listing 2: Classic McEliece re-encryption code, annotated.

A decoding failure oracle is some way (for example,
through a side channel) for the adversary to learn whether
or not A outputs ⊥ given input C of the adversary’s choice.
If the adversary has access to a decoding failure oracle, they
can extract e bit by bit as follows. The key observation is
that, if C is a ciphertext corresponding to an error vector e,
then C ′ = C ⊕ H[i] is a ciphertext corresponding to the
error vector e′ that agrees with e in all positions except i;
here H[i] is the ith column of the parity-check matrix H ,
which the adversary can reconstruct given the public key. If
e[i] = 1, then e′[i] = 0, so C ′ = C ⊕H[i] has t− 1 errors.
By contrast, if e[i] = 0, then e′[i] = 1, so C ′ = C ⊕H[i]
has t + 1 errors. Given C ′, a decoding failure oracle will
distinguish these two cases, and reveal whether e[i] is 0 or
1. We provide details about this CCA in Appendix B.

A naive plaintext recovery attack based on the above
observation is shown in Algorithm 1 and can be optimized
by almost a factor of 10 as shown in prior work [13].

Classic McEliece decapsulation under power analysis.
The Classic McEliece NIST submission implementations are
meant to keep the adversary from obtaining a decoding fail-
ure oracle by a timing side channel. However, we show that
three of its four implementations—avx, sse, and vec—
nevertheless allow the adversary to infer decoding fail-
ure through Hertzbleed. A specific implementation choice
shared by these implementations but not the unvectorized
implementation ref—the use of bitslicing—causes step 3
of decapsulation (the re-encryption check) to run with high
HW/HD data if the decoding succeeds, but low HW/HD data

6



if the decoding fails. When the same ciphertext is repeatedly
decapsulated, the different power draw between these data
patterns triggers different processor frequency profiles and
therefore different decapsulation timings.

Listing 2 shows the re-encryption checks in the avx
implementation of the mceliece348864 parameter set
(which has n = 3488, t = 64, and m = 12). The code
shown is excerpted from the decrypt function, with com-
ments added for annotation. We confirmed that we can also
trigger similar timing leakage in the other two optimized
(sse and vec) implementations for this parameter set.

Classic McEliece uses the constant-time Berlekamp-
Massey (BM) algorithm for decoding [26]. Given a cipher-
text C = He′, the BM algorithm returns an error-locator
polynomial locator (listing line 4). The algorithm pro-
ceeds to check the validity of locator via re-encryption.

When decoding succeeds, the roots of locator iden-
tify the positions of 1s in e′. When decoding fails, locator
is a random polynomial, which most likely has a few roots
over F2m . The locator polynomial is evaluated on all
field elements using a fast Fourier Transform (FFT) (line 5).
The entries of eval are scanned to identify those that are 0
(i.e., are roots of locator) and the results are saved into
the boolean array error256 (lines 11–16). If wt(e′) ≤ t,
the decoding succeeds, and error256 has wt(e′) non-zero
entries. If wt(e′) > t, the decoding fails, and error256
has a few non-zero entries.5

Then, at line 20, error256 is converted to scaled,
a 2d array bitsliced representation of elements in F2m [28].
Bitslicing is a data orthogonalization technique that stores a
x-bit data into x variables by spreading each bit of data
into the i-th bit of each x variables. Bitsliced representations
are suitable for constant-time implementations because they
decompose complicated operations into a series of bitwise
operations. However, bitslicing creates a significant power
leakage here because it amplifies the HW/HD difference in
error256 into a bigger one. Compared to a successful
decoding, a decoding failure creates on average t− 2 fewer
non-zero entries in error256. However, in scaled the
difference is amplified to around m(t−2)/2 because bitslic-
ing spreads one data element into multiple machine words.

Even worse, at line 24, scaled is passed to a trans-
posed FFT, fft_tr, whose butterfly subroutine recursively
combines the results of lower-level butterflies into higher-
level butterflies. Any HW/HD difference in the fft_tr
input will be further amplified as the butterfly expands [28].

As a result, the re-encryption subroutine exhibits a
meaningful power leakage that reveals whether the decoding
failed. With such a decoding failure oracle we can extract
the plaintext following Algorithm 1.

Finally, at line 29, the algorithm checks the validity of
re-encryption, but this does not mitigate the power leakage
because it comes in too late.

5. Experimentally we find error256 in this case contains at most 2–3
non-zero entries. A random polynomial over a finite field has one root in
expectation [27].

46 47 48 49 50 51
Power (Watts)

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Hit on error
Do not hit on error

(a) CPU power vs H[i]

3.4 3.5 3.6 3.7
Frequency (GHz)

0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

Hit on error
Do not hit on error

(b) CPU frequency vs H[i]

Figure 3: Power consumption and frequency on our i7-8700
CPU while running Classic McEliece’s decapsulation on
C ′ = C ⊕H[i] with H[i] hitting or not on hitting an error.

Experimental validation. We use the setup of Section 3.1
to locally monitor CPU frequency and power consumption
while running Classic McEliece’s decapsulation with differ-
ent input ciphertexts. We sample power/frequency every 1
ms and collect 2, 000, 000 data points per experiment.

We launch a multithreaded Classic McEliece decapsu-
lation server with a static secret key. The server spawns
pthreads on all CPU cores. Each thread handles a decapsula-
tion request with a ciphertext and the secret key as input and
runs in an infinite loop for the duration of the experiment.

Starting from a valid ciphertext C = He (known to the
adversary), we construct 2 groups of malformed ciphertexts:

1) G1 reflects our naive CCA in Algorithm 1. G1 consists
of ten different ciphertexts C ′ = C⊕H[i]. Five of them
have H[i] that hits on an entry of e. They do not trigger
the decoding failure because the number of errors that
C ′ contains is 1 below the error-correction capacity t.
The other five have H[i] that does not hit on an entry of
e. They trigger the decoding failure because the number
of errors that C ′ contains is 1 above t.

2) G2 reflects the optimized CCA as shown by Lahr et al.
that queries the decoding failure oracle on malformed
ciphertexts C ′ containing as many as x errors below
or above the capacity t [13]. (For the parameter set we
target, x = 10.) G2 contains eighteen different C ′ such
that nine of them contain t−10 to t−2 errors (inducing
a decoding failure) and the other nine contain t+ 2 to
t+ 10 errors (not inducing a decoding failure).

Figure 3 shows the results for G1, grouped according
to whether or not H[i] hits on an error. When H[i] does
not hit on an error, the decoding failure is triggered, and
the decapsulation produces a data flow with lower HW/HD
(due to the bitslicing in re-encryption) compared to when
H[i] hits on an error. As a result, the power consumption
decreases and the CPU frequency increases.

Figure 4 shows the results for G2. Again, when C ′

introduces 2 to 10 extra errors, the decapsulation consumes
less power and runs at a higher CPU frequency compared to
when C ′ removes 2 to 10 existing errors. The gap between
the two cases in both the power consumption and CPU
frequency suggests that the power/frequency leakage due to
triggering decoding failure can be distinguished regardless
of the extra number of errors being introduced or removed

7



10 5 0 5 10
Number of extra errors

47.70

47.75

47.80

47.85

47.90

Po
we

r (
W

at
ts

)

(a) CPU power vs Number of
extra errors

10 5 0 5 10
Number of extra errors

3.688

3.690

3.692

3.694

Fr
eq

ue
nc

y 
(G

Hz
)

(b) CPU frequency vs Number
of extra errors

Figure 4: Average power consumption and frequency on our
i7-8700 CPU while running Classic McEliece’s decapsula-
tion on C ′ such that C ′ contains -2 to -10 or 2 to 10 extra
errors compared to C.

by C ′. We observe consistent results across all our tested
processors and regardless of DOIT mode status.

Classic McEliece decapsulation under Hertzbleed. We
demonstrate that the above frequency leakage is even visible
remotely. We set up a server and a client following section
3.1 with the server running on our i7-8700 CPU. The server
is embedded with a long-term secret key. The server reads in
the malformed ciphertext C ′ and performs the decapsulation,
after which it sends an acknowledgment back to the client.

The client uses the same G1 and G2 groups of C ′ as
above. For each C ′, the client spawns 12 TCP concurrent
connections. Each connection starts 500 logical streams, and
each logical stream sends out 100 decapsulation requests in
a loop. The client times how long it takes the server to
finish 12×500×100 = 600,000 decapsulation requests and
collects 500 data points. The client interleaves all C ′ to even
out unusual behavior on the server machine.

Figure 5 shows the results grouped by C ′. In Figure 5a,
we show that there is a remote timing leakage for our naive
CCA in Algorithm 1. When the number of errors in C ′ is
one above the capacity t (H[i] does not hit on an error),
the decoding failure is triggered and the decapsulation time
decreases because the server CPU frequency increases. In
Figure 5b, we show that there is a remote timing leakage
for the optimized CCA of Lahr et al. [13]. In terms of
decapsulation time, the gap between C ′ removing x number
of errors, and C ′ introducing x number of errors suggests
that the timing leakage due to decoding failure is robust.

Plaintext recovery. We validate the apparent leakage by
performing a full plaintext recovery on the optimized avx
implementation of Classic McEliece with the parameter set
mceliece348864 and following a similar approach to
Lahr et al. We profile the server and determine a timing
threshold for decoding failures using the original ciphertext
that triggers 64 errors and a malformed ciphertext that
does not trigger any error. We collect 300 data points per
query and re-run a query when the result is inconclusive.
After 17.5 days we had recovered 62 error positions in the
plaintext and got the remaining two by brute-force search.

3.42 3.44 3.46 3.48 3.50
Time (s)

0.0

0.1

0.2

Pr
ob

ab
ilit

y

Hit on error
Do not hit on error

(a) G1: Remote timing leakage
vs H[i]

10 5 0 5 10
Number of extra errors

3.448

3.450

3.452

3.454

Ti
m

e 
(s

)

(b) G2: Remote timing leakage
vs Number of extra errors in C′

Figure 5: Remote timing for the naive CCA (simulated by
G1) and the optimized CCA by Lahr et al. [13] (simulated
by G2), using Classic McEliece on our i7-8700 CPU.

4. Beyond Cryptography and CPU Core Data:
Leaking Web Browser Secrets from the iGPU

We introduce the first Hertzbleed attack where data-
dependent CPU frequency differences are induced by com-
putations occurring outside the CPU core Specifically, we
demonstrate, for the first time, that CPU frequency adjust-
ments are affected by the integrated GPU (iGPU) power
consumption. Additionally, the iGPU power consumption
depends on the data values being computed on in the iGPU.
As a result, CPU frequency adjustments depend on the data
values being processed in the iGPU. We use this observation
to construct a pixel stealing attack on the latest version of
Google Chrome that allows attackers to recover content in a
cross-origin iframe due to iGPU power differences created
by SVG filters. Ours is the first cross-origin pixel stealing
attack after Chrome offloaded all SVG filter rendering to the
GPU, and where the SVG filter stack itself does not exhibit
any timing variance based on input values.

In independent and concurrent work, Taneja et al. show
that (integrated and discrete) GPU power consumption can
trigger GPU frequency changes [29] in integrated and dis-
crete GPUs from multiple vendors. Like us, Taneja et al.
construct a pixel stealing attack against Chrome. Our attack
and Taneja et al.’s attack both induce pixel-color–dependent
power consumption in the GPU, but differ in how the
attacker measures the power consumption difference. In our
attack, CPU frequency varies, so the attacker measures the
running time of a synthetic JavaScript workload running
on the CPU (see Section 4.5); in Taneja et al.’s attack, the
GPU frequency varies and so, therefore, does GPU workload
running time, so the attacker can directly query filter running
time (using requestAnimationFrame).

4.1. Background: Pixel Stealing Attacks

A Web browser manages secrets on behalf of its user
with each of many sites the user visits. Some (but not all)
of these secrets influence the visible content of site pages
rendered by the browser. For example, the main Gmail page
shows the contents of a logged-in user’s inbox.

The web sites a user visits are mutually distrusting. The
browser must maintain the isolation of each site even while

8



Table 2: CPUs and iGPUs used in Section 4.3’s experimental setup.

CPU Model iGPU
Model

CPU
Cores

CPU Base
Frequency

CPU Max
Frequency

iGPU Base
Frequency

iGPU Max
Frequency

Package
TDP

Intel i7-8700 (Coffee Lake) UHD 630 6 3.20 GHz 4.60 GHz 350 MHz 1.20 GHz 65 W
Intel i7-9700 (Coffee Lake Refresh) UHD 630 8 3.00 GHz 4.70 GHz 350 MHz 1.20 GHz 65 W
Intel i7-10510U (Comet Lake) UHD 620 4 1.80 GHz 4.90 GHz 300 MHz 1.15 GHz 15 W

executing JavaScript programs provided by one site that
invoke APIs implemented by browser components that have
access to other sites’ secrets. The same-origin policy defines
the ways in which sites can interact and the ways in which
they must be isolated [30].

One example of an allowed interaction is framing. A
page on one site can incorporate a page on another site using
an iframe, even though the same-origin policy prevents it
from reading the other page’s contents. The browser renders
the enclosing page and enclosed page and composites them.
Using cascading stylesheets (CSS), the enclosing page can
ask the browser to apply complex graphical transformations
to the enclosed page. Some available transformations are
defined as part of the CSS specification; others are incorpo-
rated by reference from the structured vector graphics (SVG)
specification.

A cross-origin leak is a vulnerability that allows one
site’s JavaScript program to obtain another site’s secret in
violation of the same-origin policy. Pixel stealing is a cross-
origin leak in which the secret revealed is the visual content
of a target site page. Pixel stealing, and cross-origin leaks
generally, may arise either from a browser implementation
bug or from a side channel [31]–[36].

In 2013, Stone [33] (and, concurrently, Kotcher
et al. [34]) showed how to use side channels in browser
rendering code for pixel stealing. Stone observed that the
Firefox implementation of the feMorphology SVG filter
included a pixel-value–dependent branch, and showed that
this branch could be used as a timing side channel for pixel
stealing. In Stone’s attack, the enclosing page uses a stack
of CSS filters that ask the browser’s rendering engine to
extract a single pixel from the enclosed iframe, duplicate it
onto a larger surface, composite the duplicated-pixel surface
with another attacker-supplied image, and then apply the
vulnerable feMorphology filter to the composited sur-
face. The attacker-supplied image is chosen so that, when
the target pixel is white, Firefox’s feMorphology filter
implementation takes one branch, and, when the target pixel
is black, it takes the other (faster) branch. The duplicated-
pixel surface serves to amplify the timing difference; it is
sized so that processing the filter stack takes more than
when the input is a white pixel, but less than when the
input is a black pixel. The attack page uses the browser’s
requestAnimationFrame API to register a function
to be called when page rendering completes; by observing
when this callback is invoked, the attacker site can deduce
whether the target pixel was white or black.

Andrysco et al. [35] and Kohlbrenner and Shacham [36]
showed that some SVG filter implementations in Firefox,
Chrome, and Safari used floating-point instructions whose

runtime depends on their operand values. They used Stone’s
attack framework to mount pixel-stealing attacks on these
browsers, again relying on requestAnimationFrame
to distinguish slow target pixels from fast.

Browser vendors have attempted to patch these vulnera-
bilities by rewriting their SVG filter implementations to run
in constant time, using techniques originally developed for
implementing cryptographic routines [22]. These techniques
are discussed in the W3C Filter Effect specification [31] and
the numerous bug reports on pixel stealing via non-constant-
time SVG filters or CSS operations [32], [37], [38].

4.2. Experimental Setup

We run our experiments on three machines with differ-
ent Intel processors, the details of which are presented in
Table 2. All our machines run Ubuntu 20.04 or 22.04 with
kernel 5.4 or 5.15, the latest microcode patches and the latest
Google Chrome version (107 64-bit) installed. Our display
resolution is 1920 × 1080. To monitor CPU frequency,
we use the methodology from Section 3.1. To monitor
iGPU power consumption, we do perf_event_open
system calls to the PMU events power/energy-gpu.
To monitor iGPU frequency, we use perf_event_open
system calls to the PMU events from the Intel i915
driver, as done in Linux [39]. We sample CPU/iGPU fre-
quency and iGPU power consumption every 5 ms. To
lock the CPU frequency (when we explicitly mention do-
ing so), we set max_perf_pct and min_perf_pct in
/sys/devices/system/cpu/intel_pstate to the
same value, following the intel pstate driver [40].

4.3. iGPU-CPU Frequency Leakage Channel

We now show that, on modern Intel processors, the
distribution of a CPU’s frequency values leaks information
about the workloads being executed on the iGPU as well as
the data being computed on in the iGPU.

GPU workloads from OpenCL. A GPU has clusters of
cores containing processing elements. OpenCL allows the
application to specify a kernel, which is an algorithm ex-
pression for how a single work-item will be executed on a
single processing element. Each work-item, identified by a
global ID, is a thread with respect to its control flow and its
memory model [41]. Multiple work-items can be grouped
together to a work-group to be scheduled to execute on a
core. OpenCL exposes the maximum number of work-items
that a work-group is capable of executing on a core via
CL_DEVICE_MAX_WORK_GROUP_SIZE.

9



12 14 16 18
Power (Watts)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Integer
Float

(a) iGPU power vs iGPU workload

3.1 3.2 3.3 3.4 3.5 3.6 3.7
Frequency (GHz)

0.0

0.2

0.4

Pr
ob

ab
ilit

y

Float
Integer

(b) CPU frequency vs iGPU workload

Figure 6: Dependency between iGPU workload, iGPU
power, and CPU frequency on our i7-8700. When the CPU
workload is fixed, the iGPU workload (Integer) that con-
sumes less power causes a higher CPU frequency compared
to the iGPU workload (Float) that consumes more power.

We construct two different 1-dimensional OpenCL
workloads, one called Integer with a kernel of inte-
ger instructions and the other one called Float with a
kernel of floating-point instructions. To utilize the GPU’s
parallel processing architecture, we partition the global
work of both workloads into work-groups of size equal to
CL_DEVICE_MAX_WORK_GROUP_SIZE.

CPU frequency is iGPU workload-dependent. To start,
we set out to understand if and how running different
iGPU workloads affects the CPU frequency values when
the CPU is under high load. To this end, we run the
above two OpenCL workloads while concurrently running
matrixprod from the stress-ng benchmark suite [42]
on all CPU cores. This setup ensures that the CPU is
under a high load (and therefore leaks via Hertzbleed) while
the iGPU workload is running. We collect 600, 000 iGPU
power consumption, iGPU frequency and CPU frequency
data points during the execution of each experiment.

Figure 6a shows the iGPU power consumption when
running both workloads on our i7-8700 processor. Not
surprisingly, the iGPU power consumption depends on the
iGPU workload. The Integer iGPU workload consumes
less power compared to the Float one. What is interesting
from our perspective is that this difference in iGPU power
consumption influences CPU frequency. This effect is vis-
ible in Figure 6b, which shows the CPU frequency when
the CPU workload was fixed to matrixprod and only
the iGPU workload varied. When the iGPU consumes less
power, the CPU runs at a higher frequency, and vice versa.

CPU frequency is iGPU data-dependent. Similarly, we
find that CPU frequency depends on the specific values
being computed on in the iGPU with a fixed kernel.

We use the same Integer iGPU workload as above
and only change the data values being computed on, keeping
the rest of the experiment setup used for Figure 6 the same.
In the first case, the OpenCL kernel repeatedly computes
1 × 1 whereas in the second case the OpenCL kernel
repeatedly computes 0xffffffffffffffff × 1.

Figure 7a shows the iGPU power consumption when
running Integer with both inputs on our i7-8700 pro-
cessor. We immediately see that the data being processed

11 12 13
Power (Watts)

0.0

0.2

0.4

Pr
ob

ab
ilit

y

f..f * 1
1 * 1

(a) iGPU power vs iGPU data

3.3 3.4 3.5 3.6 3.7 3.8
Frequency (GHz)

0.0

0.2

0.4

Pr
ob

ab
ilit

y

1 * 1
f..f * 1

(b) CPU frequency vs iGPU data

Figure 7: Dependency between data being processed in the
iGPU, iGPU power, and CPU frequency on our i7-8700.
Computing on data with a lower HW consumes less power
on the iGPU, which translates to a higher CPU frequency
than computing on data with a higher HW.

in the iGPU impacts the power consumption of the iGPU.
The 1 × 1 case, with a lower HW, consumes less power
compared to the 0xffffffffffffffff × 1 case, with
a higher HW. Figure 7b shows the CPU frequency (with a
CPU workload of matrixprod) during the same exper-
iment varying iGPU input values to the Integer kernel.
As expected, when the iGPU power consumption is lower
the CPU runs at a higher frequency, and vice versa. We
believe that this result is purely due to the data-dependent
power consumption of the iGPU. First, we constructed our
workloads in a way that the interaction between the CPU
and the iGPU is identical regardless of the input. Second, we
also monitored the iGPU frequency during each experiment,
and observed that it did not vary based on the input.

4.4. SVG Filters and CPU Frequency

We saw that the data being computed on in the iGPU can
lead to differences in CPU frequency. We now demonstrate
how this behavior can be leveraged by a web attacker by
constructing an SVG-filter pixel-stealing attack [33] that
measures CPU frequency differences arising from iGPU data
differences. Broadly, the attacker selects a cross-origin pixel
from an iframe, fills another iframe with the pixel’s color
value and executes an SVG filter stack that can cause CPU
frequency differences depending on the pixel’s color.

SVG filter stack framework. An SVG filter stack is a series
of graphical computations that can be applied to elements
of a web page (including cross-origin elements, see 4.1) to
create visual effects. Chrome runs these computations on the
GPU by default (i.e., with hardware acceleration enabled).
There are more than a dozen available SVG filters in Google
Chrome including Gaussian blurs, color transforms, image
compositions and generalized convolutions. An important
stepping stone toward end-to-end pixel stealing is to find an
SVG filter stack which, when rendering on an iframe filled
with an attacker-selected cross-origin pixel, creates iGPU
power consumption differences that depend on the pixel’s
color. As we showed in the previous section, these iGPU
power differences can trigger CPU frequency differences.
Using our method described in Section 4.5, an attacker can
then observe these differences to infer the pixel’s color.

10



(a) black: 0.01 × random (b) white: 0.99 × random

Figure 8: Compositions of iframe and random with
feComposite when the target pixel is black and white.

To analyze our proposed SVG filter stack, we build a
framework that consists of multiple web pages and native
CPU frequency and iGPU power sampling. On the main
web page, we embed a cross-origin web page with only one
black or white pixel into an iframe.6 To isolate and expand
this target pixel within the iframe, we perform the following
operations (handled by the GPU):

1) We use the CSS property clip-path to create a 1×1
clipping region for the target pixel.

2) We use the scale function in the CSS property
transform to expand the 1× 1 region into a 2000×
2000 iframe, which is either all black or all white.

Next, we construct our proposed SVG filter stack
FilterStack to be applied onto the above iframe.
Specifically, FilterStack generates a meaningful iGPU
power difference depending on the target pixel being black
or white. FilterStack works as follows:

1) We generate an image with random colors of size 20×
20. Then we scale it to 2000× 2000, the same size as
the target iframe. We use this scaled image random
as our source of randomness.

2) We use feComposite to compose random and
the target iframe. We choose the operation
arithmetic which computes each resulting pixel
using the following formula: k1i1i2 +k2i1 +k3i2 +k4,
where i1 indicates the pixel channel of iframe and
i2 indicates the pixel channel of random. We set
k1 = 0.98, k2 = 0, k3 = 0.01, and k4 = 0.
The composed image, shown in Figure 8, is 0.01 ×
random (almost all-black with low HW/HD) if the
target pixel is black and 0.99 × random (random
noise with high HW/HD) if the target pixel is white.

3) Now with the above composed image as our source, we
finish our FilterStack by appending GPU heavy
filter feGaussianBlur in a chain with standard
deviation set to 0.999. This works as an amplifier of
the HW/HD difference in our composed images, and
its iGPU power consumption should be very distinct
depending on the target pixel being black or white.

Experimental result. We apply our FilterStack repeat-
edly on the iframe targeting either a white or a black pixel
in an infinite loop of requestAnimationFrame. Simul-
taneously, we stress the CPU by launching one JavaScript

6. An arbitrary color can be binarized to black and white using
feColorMatrix and feComponentTransfer.

16 18 20
Power (Watts)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

white
black

(a) iGPU power vs target pixel
being black or white

3.6 3.7 3.8 3.9 4.0 4.1 4.2
Frequency (GHz)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

black
white

(b) CPU frequency vs target
pixel being black or white

Figure 9: Dependency between target pixel color, iGPU
power, and CPU frequency on our i7-8700 (Chrome 107).
Our FilterStack creates a substantial iGPU power dif-
ference, which translates to a CPU frequency difference,
when the isolated target pixel is black versus white.

1 let prev = Date.now();
2 while (true) {
3 curr = Date.now();
4 if (prev != curr) {
5 frequency_array.push(inc);
6 inc = 0;
7 prev = curr;
8 }
9 inc += 1;

10 }

Listing 1: Browser CPU frequency sampler.

worker thread per CPU core that infinitely does integer
multiplication in the browser. This setup ensures that the
CPU is under a high load while the iGPU FilterStack
renders. We collect 200, 000 iGPU power consumption and
CPU frequency data points during each experiment.

Figure 9a shows the iGPU power consumption on our
i7-8700 (Chrome 107) when the target pixel is black versus
white. Since our FilterStack creates a source image
with high (target pixel: white) versus low (target pixel:
black) HW/HD, and keeps stressing the iGPU to amplify
such a difference, we observe substantial iGPU power dif-
ference depending on the pixel color. This result shows that
our FilterStack is effective at creating iGPU power
consumption differences that depend on the cross-origin
pixel color. Figure 9b demonstrates that, as with previous
experiments, CPU frequency indirectly reflects the color of
the pixel targeted by the FilterStack.

4.5. Measuring CPU Frequency from JavaScript

In a typical web attacker threat model, the attacker does
not have access to native interfaces to monitor the CPU
frequency. Thus, the last step for constructing an end-to-
end pixel stealing attack is to find a method to indirectly
measure CPU frequency from the browser. We solve this
challenge by constructing a frequency sampler that reliably
measures CPU frequency.

Browser CPU frequency sampler. To construct our fre-
quency sampler, we re-use the framework of Section 4.4.

11



iframe with embedded 
webpage

1.

Color binarization

2. 

SVG filterstack render

3. 

Frequency sampler

4. 

0 7 6

1 2 3

0 0 7
Target pixel is white

Target pixel is black
Decision

5. 

Figure 10: Pixel stealing Proof-of-Concept steps.

12400 12600 12800 13000 13200 13400 13600
Counts

0.00

0.02

0.04

Pr
ob

ab
ilit

y

black
white

Figure 11: Frequency sampler readings on our i7-8700,
when stressing the CPU cores and alternately rendering
FilterStack on black and white pixels every 1 second.

However, instead of using native code to monitor the CPU
frequency directly, we leverage the fact that CPU frequency
affects the number of JavaScript operations that can be
completed within a fixed time interval.

In our frequency sampler, shown in Listing 1, we in-
crement a counter in a loop until the clock reading updates
(similarly to prior work [43]). Once the clock reading up-
dates, we save the current counter to an array, reset the
counter to zero and repeat. This way, we get an array of
counters after a run, with each counter representing the rel-
ative CPU frequency between two clock edges. We run our
frequency sampler in a separate JavaScript worker thread.

Surprisingly, instantiating Listing 1 with the nominally
higher-resolution performance.now clock in place of
Date.now yields a less effective frequency sampler in
Chrome. We explain why in Appendix C.

Browser frequency sampler and FilterStack. Now
we confirm that the frequency sampler works as expected
when FilterStack renders.

We use the framework from Section 4.4, stressing our
CPU cores from the browser, rendering FilterStack
and alternating the targeted pixel between black and white
every 1 second for 2000 times. We simultaneously run our
Date.now frequency sampler in another JavaScript worker.

In Figure 11, we observe that our sampler captures the
CPU frequency difference induced by the pixel-dependent
iGPU power consumption of FilterStack.

To confirm our findings, we checked that applying
FilterStack on black or white pixels caused no mean-
ingful difference in direct rendering time (approximately
61.2ms for both) and no difference in iGPU frequency.

Original

Reconstruction

Figure 12: Pixel stealing PoC result: Original vs Reconstruc-
tion on our i7-8700 processor.

4.6. Pixel stealing Proof-of-Concept

In the above sections, we established all the components
needed to induce a frequency leakage channel for pixel color
differences and measure it from JavaScript. We now present
an end-to-end pixel stealing attack.7

First, we profile the CPU frequency while rendering
FilterStack on two known cross-origin all white and all
black web pages to establish thresholds. Then, our Proof-of-
Concept attack on Chrome follows the steps of Figure 10:

1) We embed the target page into a region of size 48×48.
We scroll a 1× 1 div over the region pixel by pixel.

2) For each target pixel, div binarizes its color
to black or white with feColorMatrix and
feComponentTransfer, and then expands it to a
2000× 2000 iframe following Section 4.4.

3) Then, while stressing all CPU cores from the browser,
we render the FilterStack for x seconds on top of
the second iframe to create substantial iGPU power
difference depending on the target pixel color.

4) In another thread, our frequency sampler monitors the
CPU frequency between Date.now updates. (Approx-
imately every 1 ms).

5) After x seconds, we collect our CPU frequency data
and compare to our derived thresholds.

Proof-of-Concept result. Using this PoC we successfully
reconstruct visual information belonging to a cross-origin
domain. We demonstrate synthetic (checkerboard) and text
examples in Figure 12. We use this checkerboard pattern
because it has long stabilization periods and abrupt transi-
tions which demonstrates rapid detection of transitions. On
our i7-8700, we set the PoC to render the FilterStack
on each pixel for 0.8 seconds. As shown in Figure 12,

7. We will open source our PoC after Chrome deploys a patch.

12



Table 3: Details of the devices where we tested the pixel stealing PoC of Section 4.6 and results of running the PoC.

CPU Model iGPU Model Device Model Operating System Monitor
Resolution

PoC
Throughput

PoC
Error Rate

Intel i7-8700 (Coffee Lake) UHD 630 Dell XPS 8930 Ubuntu 22.04 (kernel 5.15) 1920 × 1080 0.86 seconds/pixel 0.65%
Intel i7-8700 (Coffee Lake) UHD 630 Dell XPS 8930 Windows 10 Enterprise 1920 × 1080 2.59 seconds/pixel 4.68%
AMD Ryzen 7 4800U (Zen 2) Radeon Vega 8 SimplyNUC Ruby R8 Ubuntu 22.04 (kernel 5.15) 1920 × 1080 2.88 seconds/pixel 1.95%
Intel i7-10510U (Comet Lake) UHD 620 CTL Chromebox CBx2-7 ChromeOS 107 3840 × 2160 2.50 seconds/pixel 9.46%
Intel i7-9750H (Coffee Lake) UHD 630 Dell XPS 15 7590 Windows 11 Home 1920 × 1080 3.07 seconds/pixel 3.56%
Intel i7-10850H (Comet Lake) UHD 630 Dell Latitude 5511 Windows 10 Pro 1920 × 1080 2.96 seconds/pixel 2.43%
Intel i7-10510U (Comet Lake) UHD 620 Lenovo ThinkPad X1 Ubuntu 22.04 (kernel 5.15) 1920 × 1080 1.46 seconds/pixel 2.47%

our PoC reconstructs the checkerboard with a throughput
of 0.86 seconds per pixel and an error rate of 0.06%, and
reconstructs the “S&P” from an iframe of the IEEE S&P
2023 website with a throughput of 1.13 seconds per pixel.

We also test our PoC targeting the checkerboard on a
variety of machines all with Chrome version 107 (64-bit)
and detail our results in Table 3. This does require tweak-
ing the parameters on different machines (e.g., div size,
number of layers of FilterStack). In general, our PoC
works across operating systems and hardware vendors with
an error rate under 10% and throughput of 1-3 seconds/pixel
(full time extraction 0.5 hour to 1.5 hours).

We find that the difference in performance depends
on the amount of DVFS oscillation. Intuitively, thermally
constrained devices are more affected by Hertzbleed. On
some of our 15W-TDP laptops DVFS oscillates between a
large range of P-states, increasing measurement variance.

Full color extraction. Like previous pixel-stealing attacks,
ours uses the feColorMatrix to transform an input
pixel’s RGB values to the scalar xR + yG + zB + c for
binarization. The attack as evaluated above sets x = 0.21,
y = 0.72, z = 0.07, and c = 0.0 to extract (roughly)
luminance. Alternative coefficient settings allow us to isolate
a single-color channel (for example to isolate red by setting
x = 1.0 and y = z = 0.0), and to extract that color channel’s
exact value by repeated measurements while scaling that
color’s coefficient and adjusting the constant c.

We have confirmed that this technique allows us to
perform a binary search to recover a chosen color channel
of a given cross-origin pixel.

5. Mitigations

Our ECDSA attack takes advantage of the derandom-
izing nature of BearSSL’s ECDSA implementation: given a
message, the nonce is deterministically generated. To protect
against such an attack, one can either use a randomized
ECDSA implementation or employ a constant-time imple-
mentation strategy that doesn’t suffer from power leakages.

Our Classic McEliece attack leverages a commonly
known power leakage in the code-based cryptography com-
munity, which is the decoding failure oracle. We are not
aware of an efficient mitigation of this attack for this im-
plementation style. Replacing the bitslicing technique in re-
encryption with an alternative is likely required.

To prevent our pixel stealing attack, browsers are the
best positioned to make changes. There are several options:

disable cross-origin iframe access to sensitive information
such as cookies, restrict or remove the application of graph-
ical transforms on cross-origin information, or re-implement
the SVG filters to be resilient against power leakage.

In the long term, research is needed to discover generic
Kocher-like principles that software can apply to mitigate
Hertzbleed, in addition to avoiding secret-dependent branch-
ing, indexing, or variable-time instructions.

6. Conclusion

Like speculative execution, DVFS will not be going
away any time soon. We are then presented with a problem:
power usage is dependent on data, frequency is increasingly
dependent on power, and frequency is relatively easy for ad-
versaries to measure. To make things worse, the well-known
compromise of trading timing attack resistance for power
leakage collapses in the presence of frequency attacks. Time
is power under the right circumstances.

In this paper, we demonstrated that Hertzbleed’s effects
are wide ranging, extending beyond SIKE, beyond cryp-
tography and beyond CPU-only secrets. Our cryptographic
attacks on ECDSA and Classic McEliece typify how a
small power channel can transform into timing channel
on well-written code that runs in a constant number of
CPU cycles. Our SVG-filter pixel-stealing attack on web
browsers demonstrates not only a similar leakage against
classically constant-time code, but also how to indirectly
measure frequency outside of the target code path. Critically,
this demonstrates that a defensive approach cannot rely on
blinding the timing of the target operations alone, and must
consider all sources of frequency leakage.

A common aspect of our attacks worth considering is the
large multiplicative factor they rely on; to induce a mean-
ingful Hertzbleed signal we must repeat target operations
a significant number of times, often in parallel. While this
is currently a challenge for the attacker, as DVFS grows
more fine-grained and reactive these limitations will fade.
Hertzbleed attacks will get better with each new generation
of hardware and power-saving techniques.

Our results suggest that, similarly to Spectre attacks [44],
Hertzbleed may continue to haunt us for some time to come.

Acknowledgment

We thank our anonymous reviewers for their valuable
feedback. This work was funded by NSF grants 1942888 and
1954521 and gifts from Google, Mozilla, and Qualcomm.

13



References

[1] Y. Wang, R. Paccagnella, E. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power side-channel attacks into
timing attacks on x86,” in USENIX Security, 2022.

[2] W. Castryck and T. Decru, “An efficient key recovery attack on
SIDH,” in EUROCRYPT, 2023.

[3] D. Robert, “Breaking SIDH in polynomial time,” in EUROCRYPT,
2023.

[4] L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski, “A
direct key recovery on SIDH,” in EUROCRYPT, 2023.

[5] M. R. Albrecht and N. Heninger, “On bounded distance decoding
with predicate: Breaking the “lattice barrier” for the Hidden Number
Problem,” in EUROCRYPT, 2021.

[6] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom,
“LadderLeak: Breaking ECDSA with less than one bit of nonce
leakage,” in CCS, 2020.

[7] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys, “Minerva: The curse
of ECDSA nonces: Systematic analysis of lattice attacks on noisy
leakage of bit-length of ECDSA nonces,” in CHES, 2020.

[8] D. F. Aranha, P.-A. Fouque, B. Gérard, J.-G. Kammerer, M. Tibouchi,
and J.-C. Zapalowicz, “GLV/GLS decomposition, power analysis,
and attacks on ECDSA signatures with single-bit nonce bias,” in
ASIACRYPT, 2014.

[9] J. Breitner and N. Heninger, “Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies,” in FC, 2019.

[10] E. D. Mulder, M. Hutter, M. E. Marson, and P. Pearson, “Using
Bleichenbacher’s solution to the Hidden Number Problem to attack
nonce leaks in 384-bit ECDSA,” in CHES, 2013.

[11] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA key extraction from mobile devices via nonintrusive phys-
ical side channels,” in CCS, 2016.

[12] E. R. Verheul, J. M. Doumen, and H. C. van Tilborg, “Sloppy
Alice attacks! Adaptive chosen ciphertext attacks on the McEliece
public-key cryptosystem,” in Information, coding and mathematics.
Springer, Heidelberg, Germany, 2002, pp. 99–119.

[13] N. Lahr, R. Niederhagen, R. Petri, and S. Samardjiska, “Side channel
information set decoding using iterative chunking,” in ASIACRYPT,
2020.

[14] A. Shoufan, F. Strenzke, H. G. Molter, and M. Stöttinger, “A timing
attack against Patterson algorithm in the McEliece PKC,” in ICISC,
2009.

[15] Intel 64 and IA-32 Architectures Software Developer’s Manual: Vol-
ume 3B: System Programming Guide, Part 2, Mar. 2023.

[16] “Data operand independent timing instruction set architecture (ISA)
guidance,” Online: https://www.intel.com/content/www/us/en/develo
per/articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.html, Feb. 2023, accessed
on Apr 6, 2023.

[17] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high CPU efficiency for latency-sensitive dat-
acenter workloads,” in NSDI, 2019.

[18] fail0verflow, “Console hacking 2010: Ps3 epic fail,” Presented at
27C3. Online: https://media.ccc.de/v/27c3-4087-en-console hac
king 2010, Dec. 2010.

[19] T. Pornin, “Deterministic usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA),”
RFC 6979, Aug. 2013.

[20] N. Heninger, “RSA, DH and DSA in the wild,” in Computational
Cryptography: Algorithmic Aspects of Cryptology, ser. London Math-
ematical Society Lecture Note Series. Cambridge University Press,
Feb. 2022, vol. 469, ch. 6, pp. 140–81.

[21] S. Weiser, D. Schrammel, L. Bodner, and R. Spreitzer, “Big
numbers—big troubles: Systematically analyzing nonce leakage in
(EC)DSA implementations,” in USENIX Security, 2020.

[22] P. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in CRYPTO, 1996.

[23] R. J. McEliece, “A public key cryptosystem based on algebraic coding
theory,” Deep Space Network Progress Report, vol. 4244, pp. 114–
116, 1978.

[24] M. Albrecht, D. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange,
V. Maram, I. von Maurich, R. Misoczki, R. Niederhagen, K. Paterson,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. J.
Tjhai, M. Tomlinson, and W. Wang, “Classic McEliece: conservative
code-based cryptography,” National Institute of Standards and Tech-
nology, Tech. Rep., 2022.

[25] D. J. Bernstein, “Understanding binary-Goppa decoding,” Cryptology
ePrint Archive, Report 2022/473, 2022.

[26] E. R. Berlekamp, Algebraic coding theory (revised edition). World
Scientific, 2015.

[27] V. K. Leont’ev, “Roots of random polynomials over a finite field,”
Mathematical Notes, vol. 80, no. 1, pp. 300–04, 2006.

[28] T. Chou, “McBits revisited,” in CHES, 2017.

[29] H. Taneja, J. Kim, J. J. Xu, S. van Schaik, D. Genkin, and Y. Yarom,
“Hot pixels: Frequency, power, and temperature attacks on GPUs and
ARM SoCs,” 2023, preprint, arXiv:2305.12784 [cs.CR].

[30] M. Zalewski, The Tangled Web: A Guide to Securing Modern Web
Applications. No Starch, Nov. 2011.

[31] “W3c filter effects module level 1,” https://www.w3.org/TR/filter-ef
fects-1/#priv-sec, accessed on Dec 2, 2022.

[32] “Canvas composite operations and CSS blend modes leak cross-origin
data via timing attacks,” https://bugs.chromium.org/p/chromium/iss
ues/detail?id=699028, accessed on Dec 2, 2022.

[33] P. Stone, “Pixel perfect timing attacks with HTML5,” Context Infor-
mation Security, White Paper, 2013.

[34] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-origin pixel
stealing: Timing attacks using CSS filters,” in CCS, 2013.

[35] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
S&P, 2015.

[36] D. Kohlbrenner and H. Shacham, “On the effectiveness of mitigations
against floating-point timing channels,” in USENIX Security, 2017.

[37] “SVG filter timing attack,” https://bugzilla.mozilla.org/show bug.c
gi?id=711043, accessed on Dec 2, 2022.

[38] “Pixelstealing and history-stealing through floating-point timing side
channel,” https://bugzilla.mozilla.org/show bug.cgi?id=1131288,
accessed on Dec 2, 2022.

[39] Linux, “i915_pmu.c,” https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/tree/drivers/gpu/drm/i915/i915 pmu.c, accessed
on Nov 1, 2022.

[40] “Intel P-State driver,” https://www.kernel.org/doc/Documentation/c
pu-freq/intel-pstate.txt, accessed on Nov 21, 2022.

[41] Khronos OpenCL Working Group, The OpenCL Specification, Version
v3.0.13, Feb. 2023, online: https://registry.khronos.org/OpenCL/spec
s/3.0-unified/pdf/OpenCL API.pdf.

[42] C. I. King, “stress-ng,” https://github.com/ColinIanKing/stress-ng,
2022, accessed on Jun 7, 2022.

[43] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain
times,” in USENIX Security, 2016.

[44] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in S&P, 2019.

14

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://media.ccc.de/v/27c3-4087-en-console_hacking_2010
https://media.ccc.de/v/27c3-4087-en-console_hacking_2010
https://www.w3.org/TR/filter-effects-1/#priv-sec
https://www.w3.org/TR/filter-effects-1/#priv-sec
https://bugs.chromium.org/p/chromium/issues/detail?id=699028
https://bugs.chromium.org/p/chromium/issues/detail?id=699028
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=1131288
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/i915/i915_pmu.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/i915/i915_pmu.c
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://github.com/ColinIanKing/stress-ng


Appendix A.
Binary Goppa Codes

A binary Goppa code Γ(L, g(x)), parameterized by an
irreducible binary Goppa polynomial of degree t over F2m

and a finite subset L of Fn
2m , is a linear code often used in

McEliece-like cryptosystems.
An irreducible binary Goppa polynomial is simply a

degree t irreducible polynomial over F2m (m and t as
positive integers):

g(x) =

t∑
i=0

gix
i ∈ F2m [x] (1)

We define L as a finite subset of Fn
2m , so that

L = {α1, ...αn} ⊆ Fn
2m (2)

and g(αi) 6= 0.
Now, we can define a binary Goppa code, Γ(L, g(x)),

parameterized over L and the g(x): Γ(L, g(x)) consists of
all code vectors c ∈ Fn

2 such that:
n∑

i=1

ci
(x− αi)

≡ 0 mod g(x) (3)

The syndrome of an arbitrary vector w is defined as:

Sw(x) = −
n∑

i=1

wi

g(αi)

g(x)− g(αi)

x− αi
mod g(x) (4)

Γ(L, g(x)) is a (n, k, d)-code. It can be shown that for
Γ(L, g(x)), the dimension k ≥ n − mt and the minimum
distance d ≥ 2t+ 1.

Appendix B.
Details of Classic McEliece CCA

Recall that the ciphertext C is the syndrome of the error
e. For a v in the same coset of C with e, C = He =
H(e+c) = Hv ∈ Fn−k

2 (c as an arbitrary codeword). Since
H is of the systematic form [In−k|T ], v can be recovered
from C by appending k zeroes to C: v = (C, 0, ...0) ∈ Fn

2

because Hv = C = H(e + c).
Assume the adversary attempts to probe entry i of e.

They can create a vector e′ such that it is all 0 except at
position i. They compute the new syndrome C ′ as H(v⊕e′),
which is essentially C ⊕ H[i] (H[i] as the i-th column of
H). They send C ′ to the decoding algorithm A. Observe that
C ′ = H(v⊕ e′) = H(e⊕ e′) contains t− 1 errors if e[i] =
1, and t + 1 errors otherwise. Due to the error-correction
capacity of A, if C ′ contained t+ 1 errors, it would trigger
decoding failure and A would generate ⊥, which implies
that e[i] = 0. On the other hand, if C ′ contained t − 1
errors A would generate e ⊕ e′, which implies e[i] = 1.
Therefore, if the adversary has access to such a decoding
failure oracle, they can extract e bit by bit.

13200 13600 14000
Counts

0.000

0.025

0.050

0.075

0.100

Pr
ob

ab
ilit

y

88
90

(a) Date.now

100 200 300 400
Counts

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y

88
90

(b) performance.now

Figure 13: Counter values of our frequency samplers when
locking our i7-8700 CPU frequency to 88% versus 90%.

Appendix C.
CPU Frequency Sampling from JavaScript

The best frequency sampler for our attack should give
us distinct counters when the CPU runs at different fre-
quencies. In order to accurately detect the CPU frequency
during a short interval, the sampler needs to have high
resolution and low overhead for each reading. In terms
of resolution, Date.now has a resolution of 1 ms and
performance.now has a resolution of 0.1 ms on Chrome
107 (64-bit). Compared to Date.now, we can collect
more data points from performance.now during a fixed
amount of time. However, this advantage is outweighed
by the fact that between two clock edges we can call
Date.now about 5 times more than performance.now.

We experimentally confirm the best frequency sampler
between the two by locking the CPU frequency to 88% or
90% of the maximum frequency to emulate the difference
generated by FilterStack and then collecting 200 sec-
onds of measurements from each sampler.

As Figure 13 shows, the frequency sampler from
Date.now gives a significant counter difference when the
CPU is locked to 88% versus 90% (Figure 13a), whereas the
frequency sampler from performance.now only gives
minor counter difference (Figure 13b).

To understand the root cause of this difference, we traced
the optimized assembly code of the two timers produced
by the JavaScript JIT in Chrome, which is how our timers
are run most of the time after the initial JIT warmup of
a few thousand iterations. Calling a Date.now turns out
to be compiled into a single call into a V8 builtin which
then directly calls into Runtime_DateCurrentTime in
V8 internally. In comparison, when a performance.now
gets called, it needs to call LoadGlobalICTrampoline
and CallFunctionTemplate, both doing complicated
type checks by calling into CheckObjectType many
times, before the NowOperationCallback Blink bind-
ing eventually gets called which then reads the timer. We
observe that eventually Runtime_DateCurrentTime
calls gettimeofday and NowOperationCallBack
calls clock_gettime on the Linux platform. Since there
is only about a 5% difference between these two timers
on our i7-8700, the performance difference in the browser
comes from the complexity in the generated code path.

15



We note that Chrome makes the output of both
Date.now and performance.now fuzzy as Spec-
tre mitigation. The MurmurHash invocation used in
timer fuzzing entails significant performance overhead for
JavaScript that calls a timer in a tight loop, as ours does.
The Chrome developers are now working to reduce the per-
formance overhead of timer fuzzing,8 which may improve
the effectiveness of our frequency sampler.

8. See https://crbug.com/1414615.

16

https://crbug.com/1414615

	Introduction
	Background: Hertzbleed
	Beyond SIKE: The Possibility of Triggering Hertzbleed in Other Cryptosystems
	Experimental Setup
	Case Study on ECDSA
	Case Study on Classic McEliece

	Beyond Cryptography and CPU Core Data: Leaking Web Browser Secrets from the iGPU
	Background: Pixel Stealing Attacks
	Experimental Setup
	iGPU-CPU Frequency Leakage Channel
	SVG Filters and CPU Frequency
	Measuring CPU Frequency from JavaScript
	Pixel stealing Proof-of-Concept

	Mitigations
	Conclusion
	References
	Appendix A: Binary Goppa Codes
	Appendix B: Details of Classic McEliece CCA
	Appendix C: CPU Frequency Sampling from JavaScript

